These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 30524044)
1. Generalized stacking fault energy of carbon-alloyed paramagnetic [Formula: see text]-Fe. Xie R; Li W; Lu S; Song Y; Vitos L J Phys Condens Matter; 2019 Feb; 31(6):065703. PubMed ID: 30524044 [TBL] [Abstract][Full Text] [Related]
2. Generalized stacking fault energies of alloys. Li W; Lu S; Hu QM; Kwon SK; Johansson B; Vitos L J Phys Condens Matter; 2014 Jul; 26(26):265005. PubMed ID: 24903220 [TBL] [Abstract][Full Text] [Related]
3. Ab Initio Study of Elastic and Mechanical Properties in FeCrMn Alloys. Razumovskiy VI; Hahn C; Lukas M; Romaner L Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30959910 [TBL] [Abstract][Full Text] [Related]
4. Stacking fault energy of face-centered cubic metals: thermodynamic and ab initio approaches. Li R; Lu S; Kim D; Schönecker S; Zhao J; Kwon SK; Vitos L J Phys Condens Matter; 2016 Oct; 28(39):395001. PubMed ID: 27484794 [TBL] [Abstract][Full Text] [Related]
5. First-principles study of the ternary effects on the plasticity of [Formula: see text]-TiAl crystals. Lee T; Kim SW; Kim JY; Ko WS; Ryu S Sci Rep; 2020 Dec; 10(1):21614. PubMed ID: 33303776 [TBL] [Abstract][Full Text] [Related]
6. Generalized Stacking Fault Energy of Al-Doped CrMnFeCoNi High-Entropy Alloy. Sun X; Zhang H; Li W; Ding X; Wang Y; Vitos L Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31887990 [TBL] [Abstract][Full Text] [Related]
7. Theoretical Analysis of Stacking Fault Energy, Elastic Properties, Electronic Properties, and Work Function of Mn Sun F; Zhang G; Xu H; Li D; Fu Y Materials (Basel); 2024 Sep; 17(17):. PubMed ID: 39274768 [TBL] [Abstract][Full Text] [Related]
8. Simulated nanoindentation into single-phase fcc Fe[Formula: see text]Ni[Formula: see text] alloys predicts maximum hardness for equiatomic stoichiometry. Alabd Alhafez I; Deluigi OR; Tramontina D; Ruestes CJ; Bringa EM; Urbassek HM Sci Rep; 2023 Jun; 13(1):9806. PubMed ID: 37328557 [TBL] [Abstract][Full Text] [Related]
9. Stacking fault energy prediction for austenitic steels: thermodynamic modeling vs. machine learning. Wang X; Xiong W Sci Technol Adv Mater; 2020 Sep; 21(1):626-634. PubMed ID: 33061835 [TBL] [Abstract][Full Text] [Related]
10. The behaviour of stacking fault energy upon interstitial alloying. Lee JY; Koo YM; Lu S; Vitos L; Kwon SK Sci Rep; 2017 Sep; 7(1):11074. PubMed ID: 28894163 [TBL] [Abstract][Full Text] [Related]
11. An Fe-Ni-Cr embedded atom method potential for austenitic and ferritic systems. Zhou XW; Foster ME; Sills RB J Comput Chem; 2018 Nov; 39(29):2420-2431. PubMed ID: 30379326 [TBL] [Abstract][Full Text] [Related]
12. Invariant plastic deformation mechanism in paramagnetic nickel-iron alloys. Dong Z; Li W; Schönecker S; Jiang B; Vitos L Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33782128 [TBL] [Abstract][Full Text] [Related]
13. Conjugated π electron engineering of generalized stacking fault in graphene and h-BN. Ouyang B; Chen C; Song J Nanotechnology; 2018 Mar; 29(9):09LT01. PubMed ID: 29313837 [TBL] [Abstract][Full Text] [Related]
14. Nitrogen in chromium-manganese stainless steels: a review on the evaluation of stacking fault energy by computational thermodynamics. Mosecker L; Saeed-Akbari A Sci Technol Adv Mater; 2013 Jun; 14(3):033001. PubMed ID: 27877573 [TBL] [Abstract][Full Text] [Related]
15. Ab initio lattice stability of fcc and hcp Fe-Mn random alloys. Gebhardt T; Music D; Hallstedt B; Ekholm M; Abrikosov IA; Vitos L; Schneider JM J Phys Condens Matter; 2010 Jul; 22(29):295402. PubMed ID: 21399304 [TBL] [Abstract][Full Text] [Related]
16. Atomic-scale dynamic process of deformation-induced stacking fault tetrahedra in gold nanocrystals. Wang JW; Narayanan S; Huang JY; Zhang Z; Zhu T; Mao SX Nat Commun; 2013; 4():2340. PubMed ID: 23945977 [TBL] [Abstract][Full Text] [Related]
17. Design metastability in high-entropy alloys by tailoring unstable fault energies. Wang X; De Vecchis RR; Li C; Zhang H; Hu X; Sridar S; Wang Y; Chen W; Xiong W Sci Adv; 2022 Sep; 8(36):eabo7333. PubMed ID: 36083911 [TBL] [Abstract][Full Text] [Related]
18. Evidence of large magnetostructural effects in austenitic stainless steels. Vitos L; Korzhavyi PA; Johansson B Phys Rev Lett; 2006 Mar; 96(11):117210. PubMed ID: 16605866 [TBL] [Abstract][Full Text] [Related]
19. High stress twinning in a compositionally complex steel of very high stacking fault energy. Wang Z; Lu W; An F; Song M; Ponge D; Raabe D; Li Z Nat Commun; 2022 Jun; 13(1):3598. PubMed ID: 35739123 [TBL] [Abstract][Full Text] [Related]
20. Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation. Wang C; Wang H; Huang T; Xue X; Qiu F; Jiang Q Sci Rep; 2015 May; 5():10213. PubMed ID: 25998415 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]