BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30524099)

  • 21. Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography.
    Zhu J; Yu J; Qu Y; He Y; Li Y; Yang Q; Huo T; He X; Chen Z
    Opt Lett; 2018 May; 43(10):2388-2391. PubMed ID: 29762599
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modified error in constitutive equations (MECE) approach for ultrasound elastography.
    Ghosh S; Zou Z; Babaniyi O; Aquino W; Diaz MI; Bayat M; Fatemi M
    J Acoust Soc Am; 2017 Oct; 142(4):2084. PubMed ID: 29092577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantification of iris elasticity using acoustic radiation force optical coherence elastography.
    Zhu Y; Zhang Y; Shi G; Xue Q; Han X; Ai S; Shi J; Xie C; He X
    Appl Opt; 2020 Dec; 59(34):10739-10745. PubMed ID: 33361893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling transversely isotropic, viscoelastic, incompressible tissue-like materials with application in ultrasound shear wave elastography.
    Qiang B; Brigham JC; Aristizabal S; Greenleaf JF; Zhang X; Urban MW
    Phys Med Biol; 2015 Feb; 60(3):1289-306. PubMed ID: 25591921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography.
    Nguyen TM; Song S; Arnal B; Wong EY; Huang Z; Wang RK; O'Donnell M
    J Biomed Opt; 2014 Jan; 19(1):16013. PubMed ID: 24441876
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography.
    Zhu Y; Dong C; Yin Y; Chen X; Guo Y; Zheng Y; Shen Y; Wang T; Zhang X; Chen S
    Ultrasound Med Biol; 2015 Feb; 41(2):601-9. PubMed ID: 25542484
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elastographic contrast generation in optical coherence tomography from a localized shear stress.
    Grimwood A; Garcia L; Bamber J; Holmes J; Woolliams P; Tomlins P; Pankhurst QA
    Phys Med Biol; 2010 Sep; 55(18):5515-28. PubMed ID: 20798457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reconstructing 3-D maps of the local viscoelastic properties using a finite-amplitude modulated radiation force.
    Giannoula A; Cobbold R; Bezerianos A
    Ultrasonics; 2014 Feb; 54(2):563-75. PubMed ID: 24011778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Propagation of shear waves generated by a modulated finite amplitude radiation force in a viscoelastic medium.
    Giannoula A; Cobbold RS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):575-88. PubMed ID: 19411216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Gaussian shear wave in a dispersive medium.
    Parker KJ; Baddour N
    Ultrasound Med Biol; 2014 Apr; 40(4):675-84. PubMed ID: 24412170
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simulation of nonlinear transient elastography: finite element model for the propagation of shear waves in homogeneous soft tissues.
    Ye W; Bel-Brunon A; Catheline S; Combescure A; Rochette M
    Int J Numer Method Biomed Eng; 2018 Jan; 34(1):. PubMed ID: 28548237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography.
    Nguyen TM; Zorgani A; Lescanne M; Boccara C; Fink M; Catheline S
    J Biomed Opt; 2016 Dec; 21(12):126013. PubMed ID: 27999863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Narrowband shear wave generation by a Finite-Amplitude radiation force: The fundamental component.
    Giannoula A; Cobbold RS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):343-58. PubMed ID: 18334341
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parametric imaging of viscoelasticity using optical coherence elastography.
    Wijesinghe P; McLaughlin RA; Sampson DD; Kennedy BF
    Phys Med Biol; 2015 Mar; 60(6):2293-307. PubMed ID: 25715798
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo.
    Li J; Wang S; Manapuram RK; Singh M; Menodiado FM; Aglyamov S; Emelianov S; Twa MD; Larin KV
    J Biomed Opt; 2013 Dec; 18(12):121503. PubMed ID: 24089292
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The dynamic deformation of a layered viscoelastic medium under surface excitation.
    Aglyamov SR; Wang S; Karpiouk AB; Li J; Twa M; Emelianov SY; Larin KV
    Phys Med Biol; 2015 Jun; 60(11):4295-312. PubMed ID: 25974168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phase-resolved acoustic radiation force optical coherence elastography.
    Qi W; Chen R; Chou L; Liu G; Zhang J; Zhou Q; Chen Z
    J Biomed Opt; 2012 Nov; 17(11):110505. PubMed ID: 23123971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of Tissue Microstructure on Shear Wave Speed Measurements in Plane Shear Wave Elastography: A Computational Study in Lossless Fibrotic Liver Media.
    Wang Y; Jiang J
    Ultrason Imaging; 2018 Jan; 40(1):49-63. PubMed ID: 28720056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GPU-based Green's function simulations of shear waves generated by an applied acoustic radiation force in elastic and viscoelastic models.
    Yang Y; Urban MW; McGough RJ
    Phys Med Biol; 2018 May; 63(10):10NT01. PubMed ID: 29658491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-source and multi-directional shear wave generation with intersecting steered ultrasound push beams.
    Nabavizadeh A; Song P; Chen S; Greenleaf JF; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Apr; 62(4):647-62. PubMed ID: 25881343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.