BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30524099)

  • 41. Full wave simulation of arterial response under acoustic radiation force.
    Roy T; Guddati MN
    Comput Biol Med; 2022 Oct; 149():106021. PubMed ID: 36055160
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Arterial waveguide model for shear wave elastography: implementation and in vitro validation.
    Astaneh AV; Urban MW; Aquino W; Greenleaf JF; Guddati MN
    Phys Med Biol; 2017 Jul; 62(13):5473-5494. PubMed ID: 28609299
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Shear Wave Speed Estimation Using Reverberant Shear Wave Fields: Implementation and Feasibility Studies.
    Ormachea J; Castaneda B; Parker KJ
    Ultrasound Med Biol; 2018 May; 44(5):963-977. PubMed ID: 29477745
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Forward and inverse viscoelastic wave scattering by irregular inclusions for shear wave elastography.
    Bernard S; Cloutier G
    J Acoust Soc Am; 2017 Oct; 142(4):2346. PubMed ID: 29092551
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Probe Oscillation Shear Elastography (PROSE): A High Frame-Rate Method for Two-Dimensional Ultrasound Shear Wave Elastography.
    Mellema DC; Song P; Kinnick RR; Urban MW; Greenleaf JF; Manduca A; Chen S
    IEEE Trans Med Imaging; 2016 Sep; 35(9):2098-106. PubMed ID: 27076352
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification process based on shear wave propagation within a phantom using finite element modelling and magnetic resonance elastography.
    Leclerc GE; Charleux F; Ho Ba Tho MC; Bensamoun SF
    Comput Methods Biomech Biomed Engin; 2015; 18(5):485-91. PubMed ID: 23947476
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantitative Assessment of Thin-Layer Tissue Viscoelastic Properties Using Ultrasonic Micro-Elastography With Lamb Wave Model.
    Shih CC; Qian X; Ma T; Han Z; Huang CC; Zhou Q; Shung KK
    IEEE Trans Med Imaging; 2018 Aug; 37(8):1887-1898. PubMed ID: 29993652
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On the effects of reflected waves in transient shear wave elastography.
    Deffieux T; Gennisson JL; Bercoff J; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2032-5. PubMed ID: 21989866
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental evidence of shear waves in fractional viscoelastic rheological models.
    Gomez A; Callejas A; Rus G; Saffari N
    Sci Rep; 2022 May; 12(1):7448. PubMed ID: 35523858
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impact of Acoustic Radiation Force Excitation Geometry on Shear Wave Dispersion and Attenuation Estimates.
    Lipman SL; Rouze NC; Palmeri ML; Nightingale KR
    Ultrasound Med Biol; 2018 Apr; 44(4):897-908. PubMed ID: 29422328
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography.
    Li C; Guan G; Cheng X; Huang Z; Wang RK
    Opt Lett; 2012 Feb; 37(4):722-4. PubMed ID: 22344160
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantitative viscoelastic parameters measured by harmonic motion imaging.
    Vappou J; Maleke C; Konofagou EE
    Phys Med Biol; 2009 Jun; 54(11):3579-94. PubMed ID: 19454785
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Moving-source elastic wave reconstruction for high-resolution optical coherence elastography.
    Hsieh BY; Song S; Nguyen TM; Yoon SJ; Shen TT; Wang RK; O'Donnell M
    J Biomed Opt; 2016 Nov; 21(11):116006. PubMed ID: 27822580
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kelvin-Voigt Parameters Reconstruction of Cervical Tissue-Mimicking Phantoms Using Torsional Wave Elastography.
    Callejas A; Gomez A; Faris IH; Melchor J; Rus G
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31349721
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multi-Channel Optical Coherence Elastography Using Relative and Absolute Shear-Wave Time of Flight.
    Elyas E; Grimwood A; Erler JT; Robinson SP; Cox TR; Woods D; Clowes P; De Luca R; Marinozzi F; Fromageau J; Bamber JC
    PLoS One; 2017; 12(1):e0169664. PubMed ID: 28107368
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modelling the impulse diffraction field of shear waves in transverse isotropic viscoelastic medium.
    Chatelin S; Gennisson JL; Bernal M; Tanter M; Pernot M
    Phys Med Biol; 2015 May; 60(9):3639-54. PubMed ID: 25880794
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Experimental validation of acoustic radiation force induced shear wave interference patterns.
    Hoyt K; Hah Z; Hazard C; Parker KJ
    Phys Med Biol; 2012 Jan; 57(1):21-30. PubMed ID: 22127377
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differential effects of pre-tension on shear wave propagation in elastic media with different boundary conditions as measured by magnetic resonance elastography and finite element modeling.
    Chen Q; Ringleb SI; Manduca A; Ehman RL; An KN
    J Biomech; 2006; 39(8):1428-34. PubMed ID: 15964007
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source.
    Song S; Le NM; Huang Z; Shen T; Wang RK
    Opt Lett; 2015 Nov; 40(21):5007-10. PubMed ID: 26512505
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Shear wave elasticity imaging based on acoustic radiation force and optical detection.
    Cheng Y; Li R; Li S; Dunsby C; Eckersley RJ; Elson DS; Tang MX
    Ultrasound Med Biol; 2012 Sep; 38(9):1637-45. PubMed ID: 22749816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.