These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 30524116)

  • 1. Charge transport in GaAs nanowires: interplay between conductivity through the interior and surface conductivity.
    Korte S; Nägelein A; Steidl M; Prost W; Cherepanov V; Kleinschmidt P; Hannappel T; Voigtländer B
    J Phys Condens Matter; 2019 Feb; 31(7):074004. PubMed ID: 30524116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Applied Voltages on the Charge Transport Properties in a ZnO Nanowire Field Effect Transistor.
    Yoon J; Huang F; Shin KH; Sohn JI; Hong WK
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical transport properties of single undoped and n-type doped InN nanowires.
    Richter T; Lüth H; Schäpers T; Meijers R; Jeganathan K; Estévez Hernández S; Calarco R; Marso M
    Nanotechnology; 2009 Oct; 20(40):405206. PubMed ID: 19738304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron mobilities approaching bulk limits in "surface-free" GaAs nanowires.
    Joyce HJ; Parkinson P; Jiang N; Docherty CJ; Gao Q; Tan HH; Jagadish C; Herz LM; Johnston MB
    Nano Lett; 2014 Oct; 14(10):5989-94. PubMed ID: 25232659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards low-dimensional hole systems in Be-doped GaAs nanowires.
    Ullah AR; Gluschke JG; Krogstrup P; Sørensen CB; Nygård J; Micolich AP
    Nanotechnology; 2017 Mar; 28(13):134005. PubMed ID: 28256451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable p-n switching behaviors of GaAs nanowires via an interface effect.
    Han N; Wang F; Hou JJ; Xiu F; Yip S; Hui AT; Hung T; Ho JC
    ACS Nano; 2012 May; 6(5):4428-33. PubMed ID: 22519669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-frequency acoustic charge transport in GaAs nanowires.
    Büyükköse S; Hernández-Mínguez A; Vratzov B; Somaschini C; Geelhaar L; Riechert H; van der Wiel WG; Santos PV
    Nanotechnology; 2014 Apr; 25(13):135204. PubMed ID: 24595075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct photocurrent response of individual GaAs nanowires induced by n-type doping.
    Xia H; Lu ZY; Li TX; Parkinson P; Liao ZM; Liu FH; Lu W; Hu WD; Chen PP; Xu HY; Zou J; Jagadish C
    ACS Nano; 2012 Jul; 6(7):6005-13. PubMed ID: 22724925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping.
    Boland JL; Casadei A; Tütüncüoglu G; Matteini F; Davies CL; Jabeen F; Joyce HJ; Herz LM; Fontcuberta I Morral A; Johnston MB
    ACS Nano; 2016 Apr; 10(4):4219-27. PubMed ID: 26959350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stoichiometry dependent electron transport and gas sensing properties of indium oxide nanowires.
    Gali P; Sapkota G; Syllaios AJ; Littler C; Philipose U
    Nanotechnology; 2013 Jun; 24(22):225704. PubMed ID: 23644899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated freestanding single-crystal silicon nanowires: conductivity and surface treatment.
    Lee CH; Ritz CS; Huang M; Ziwisky MW; Blise RJ; Lagally MG
    Nanotechnology; 2011 Feb; 22(5):055704. PubMed ID: 21178224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Conductivity of In
    Alekseev PA; Sharov VA; Dunaevskiy MS; Kirilenko DA; Ilkiv IV; Reznik RR; Cirlin GE; Berkovits VL
    Nano Lett; 2019 Jul; 19(7):4463-4469. PubMed ID: 31203633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composite Polymer Electrolytes with Li
    Yang T; Zheng J; Cheng Q; Hu YY; Chan CK
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):21773-21780. PubMed ID: 28598143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical conduction mechanism of an individual polypyrrole nanowire at low temperatures.
    Yu GF; Pan W; Yu M; Han WP; Zhang JC; Zhang HD; Long YZ
    Nanotechnology; 2015 Jan; 26(4):045703. PubMed ID: 25557116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface effects on the atomic and electronic structure of unpassivated GaAs nanowires.
    Rosini M; Magri R
    ACS Nano; 2010 Oct; 4(10):6021-31. PubMed ID: 20853868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Features of electron gas in InAs nanowires imposed by interplay between nanowire geometry, doping and surface states.
    Degtyarev VE; Khazanova SV; Demarina NV
    Sci Rep; 2017 Jun; 7(1):3411. PubMed ID: 28611438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ phosphrous doping in ZnTe nanowires with enhanced p-type conductivity.
    Cao YL; Liu ZT; Chen LM; Tang YB; Luo LB; Lee ST; Lee CS
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2353-9. PubMed ID: 22755058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of surface states on electron transport through intrinsic Ge nanowires.
    Hanrath T; Korgel BA
    J Phys Chem B; 2005 Mar; 109(12):5518-24. PubMed ID: 16851592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conductance control in VO2 nanowires by surface doping with gold nanoparticles.
    Kim GH; Kwak Y; Lee I; Rathi S; Baik JM; Yi KS
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):14812-8. PubMed ID: 25140383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the light emission of GaAs nanowires by pressure-modulated charge transfer.
    Ma L; Wang P; Yin X; Liang Y; Liu S; Li L; Pan D; Yao Z; Liu B; Zhao J
    Nanoscale Adv; 2020 Jun; 2(6):2558-2563. PubMed ID: 36133362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.