These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 3052414)

  • 21. [Functional evolution of bacteria in degradation of environmental pollutants].
    Nojiri H; Tsuda M
    Tanpakushitsu Kakusan Koso; 2005 Oct; 50(12):1505-9. PubMed ID: 16353392
    [No Abstract]   [Full Text] [Related]  

  • 22. Bacteria and phytoremediation: new uses for endophytic bacteria in plants.
    Newman LA; Reynolds CM
    Trends Biotechnol; 2005 Jan; 23(1):6-8; discussion 8-9. PubMed ID: 15629849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology.
    Dvořák P; Nikel PI; Damborský J; de Lorenzo V
    Biotechnol Adv; 2017 Nov; 35(7):845-866. PubMed ID: 28789939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbes in heavy metal remediation.
    Rajendran P; Muthukrishnan J; Gunasekaran P
    Indian J Exp Biol; 2003 Sep; 41(9):935-44. PubMed ID: 15242287
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recombinant bacteria for environmental release: what went wrong and what we have learnt from it.
    de Lorenzo V
    Clin Microbiol Infect; 2009 Jan; 15 Suppl 1():63-5. PubMed ID: 19220359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Construction of a stable genetically engineered microorganism for degrading HCH & methyl parathion and its characteristics].
    Lu P; Hong YF; Hong Q; Jiang X; Li SP
    Huan Jing Ke Xue; 2008 Jul; 29(7):1973-6. PubMed ID: 18828386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biodegradation of phenol and its derivatives by engineered bacteria: current knowledge and perspectives.
    Rucká L; Nešvera J; Pátek M
    World J Microbiol Biotechnol; 2017 Sep; 33(9):174. PubMed ID: 28879631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploiting the ecogenomics toolbox for environmental diagnostics of organohalide-respiring bacteria.
    Maphosa F; de Vos WM; Smidt H
    Trends Biotechnol; 2010 Jun; 28(6):308-16. PubMed ID: 20434786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Planetary systems biology.
    Benner SA; Ricardo A
    Mol Cell; 2005 Feb; 17(4):471-2. PubMed ID: 15721248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants.
    Afzal M; Khan QM; Sessitsch A
    Chemosphere; 2014 Dec; 117():232-42. PubMed ID: 25078615
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determinants of biodegradability.
    Dagley S
    Q Rev Biophys; 1978 Nov; 11(4):577-602. PubMed ID: 382230
    [No Abstract]   [Full Text] [Related]  

  • 32. Genetic engineering of bacteria from managed and natural habitats.
    Lindow SE; Panopoulos NJ; McFarland BL
    Science; 1989 Jun; 244(4910):1300-7. PubMed ID: 2660261
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prospects for using combined engineered bacterial enzymes and plant systems to rhizoremediate polychlorinated biphenyls.
    Sylvestre M
    Environ Microbiol; 2013 Mar; 15(3):907-15. PubMed ID: 23106850
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Exploring for the biological and genetic resources from the uncultivated bacteria].
    Kimura N
    Seikagaku; 2011 Aug; 83(8):742-6. PubMed ID: 21942097
    [No Abstract]   [Full Text] [Related]  

  • 35. Molecular Biological Methods in Environmental Engineering.
    Zhang G; Wei L; Chang CC; Zhang Y; Wei D
    Water Environ Res; 2016 Oct; 88(10):930-53. PubMed ID: 27620079
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cleaning up behind us. The potential of genetically modified bacteria to break down toxic pollutants in the environment.
    de Lorenzo V
    EMBO Rep; 2001 May; 2(5):357-9. PubMed ID: 11375921
    [No Abstract]   [Full Text] [Related]  

  • 37. Impacts of organic carbon availability and recipient bacteria characteristics on the potential for TOL plasmid genetic bioaugmentation in soil slurries.
    Ikuma K; Holzem RM; Gunsch CK
    Chemosphere; 2012 Sep; 89(2):158-63. PubMed ID: 22743182
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Beneficial bacteria and bioremediation.
    Saier MH
    J Mol Microbiol Biotechnol; 2005; 9(2):63-4. PubMed ID: 16319495
    [No Abstract]   [Full Text] [Related]  

  • 39. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants.
    Das S; Dash HR; Chakraborty J
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):2967-84. PubMed ID: 26860944
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Mobile genetic elements for microbial degradation of environmental pollutants].
    Tsuda M; Sota M
    Tanpakushitsu Kakusan Koso; 2005 Oct; 50(12):1527-34. PubMed ID: 16218452
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.