These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 3052415)

  • 41. DDT metabolites and analogs: ring fission by Hydrogenomonas.
    Focht DD; Alexander M
    Science; 1970 Oct; 170(3953):91-2. PubMed ID: 4989153
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contaminant sources, gastrointestinal absorption, and tissue distribution of organohalogenated pollutants in chicken from an e-waste site.
    Zheng XB; Luo XJ; Zheng J; Zeng YH; Mai BX
    Sci Total Environ; 2015 Feb; 505():1003-10. PubMed ID: 25461100
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A QSAR evaluation of Ah receptor binding of halogenated aromatic xenobiotics.
    Mekenyan OG; Veith GD; Call DJ; Ankley GT
    Environ Health Perspect; 1996 Dec; 104(12):1302-10. PubMed ID: 9118871
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Degradation of polynuclear aromatic hydrocarbons by two strains of Pseudomonas.
    Nwinyi OC; Ajayi OO; Amund OO
    Braz J Microbiol; 2016; 47(3):551-62. PubMed ID: 27245129
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biodegradation of benzene, toluene, and other aromatic compounds by Pseudmonas sp. D8.
    Chang BV; Wu WB; Yuan SY
    Chemosphere; 1997 Dec; 35(12):2807-15. PubMed ID: 9415978
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microbial degradation of chlorinated aromatic compounds.
    Sahasrabudhe SR; Modi VV
    Microbiol Sci; 1987 Oct; 4(10):300-3. PubMed ID: 3153591
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Engineering hybrid pseudomonads capable of utilizing a wide range of aromatic hydrocarbons and of efficient degradation of trichloroethylene.
    Suyama A; Iwakiri R; Kimura N; Nishi A; Nakamura K; Furukawa K
    J Bacteriol; 1996 Jul; 178(14):4039-46. PubMed ID: 8763929
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of structure in the disposition of halogenated aromatic xenobiotics.
    Birnbaum LS
    Environ Health Perspect; 1985 Sep; 61():11-20. PubMed ID: 2998745
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons.
    Xia W; Du Z; Cui Q; Dong H; Wang F; He P; Tang Y
    J Hazard Mater; 2014 Jul; 276():489-98. PubMed ID: 24929788
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Technical in situ methods and their environmental hygiene control during the biological purification of soil and groundwaters polluted by organic halogens].
    Hanert HH; Harborth P; Lehmann M; Windt E; Rinkel U; Scheibel HJ; Hoppenheidt K; Rose H
    Schriftenr Ver Wasser Boden Lufthyg; 1989; 80():231-45. PubMed ID: 2658030
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microbiological methods for the cleanup of soil and ground water contaminated with halogenated organic compounds.
    Morgan P; Watkinson RJ
    FEMS Microbiol Rev; 1989 Dec; 5(4):277-99. PubMed ID: 2698231
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Summary of the workshop on recent advances in analytic techniques for halogenated aromatic compounds.
    Ann N Y Acad Sci; 1979 May; 320():125-30. PubMed ID: 378060
    [No Abstract]   [Full Text] [Related]  

  • 53. Anaerobic microbial dehalogenation.
    Smidt H; de Vos WM
    Annu Rev Microbiol; 2004; 58():43-73. PubMed ID: 15487929
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genetically modified organisms for the environment: stories of success and failure and what we have learned from them.
    Cases I; de Lorenzo V
    Int Microbiol; 2005 Sep; 8(3):213-22. PubMed ID: 16200500
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biodegradation of hydrocarbons in the environment.
    Atlas RM
    Basic Life Sci; 1988; 45():211-22. PubMed ID: 3052410
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aerobic cometabolism of DDT analogues by Hydrogenomonas sp.
    Focht DD; Alexander M
    J Agric Food Chem; 1971; 19(1):20-2. PubMed ID: 4993259
    [No Abstract]   [Full Text] [Related]  

  • 57. Anaerobic microbial transformation of halogenated aromatics and fate prediction using electron density modeling.
    Cooper M; Wagner A; Wondrousch D; Sonntag F; Sonnabend A; Brehm M; Schüürmann G; Adrian L
    Environ Sci Technol; 2015 May; 49(10):6018-28. PubMed ID: 25909816
    [TBL] [Abstract][Full Text] [Related]  

  • 58. p-Cymene pathway in Pseudomonas putida: selective enrichment of defective mutants by using halogenated substrate analogs.
    Wigmore GJ; Ribbons DW
    J Bacteriol; 1980 Aug; 143(2):816-24. PubMed ID: 7204334
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biodegradation of Decabromodiphenyl Ether (BDE-209) by Crude Enzyme Extract from Pseudomonas aeruginosa.
    Liu Y; Gong AJ; Qiu LN; Li JR; Li FK
    Int J Environ Res Public Health; 2015 Sep; 12(9):11829-47. PubMed ID: 26393637
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of bioinformatics tools and databases in microbial dehalogenation research (a review).
    Satpathy R; Konkimalla VB; Ratha J
    Prikl Biokhim Mikrobiol; 2015; 51(1):15-23. PubMed ID: 25842899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.