BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 30524180)

  • 1. Examining the use of USEPA's Generic Attenuation Factor in determining groundwater screening levels for vapor intrusion.
    Yao Y; Verginelli I; Suuberg EM; Eklund B
    Ground Water Monit Remediat; 2018; 38(2):79-89. PubMed ID: 30524180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An alternative generic groundwater-to-indoor air attenuation factor for application in commercial, industrial, and other nonresidential settings.
    Levy LC; Hallberg KE; Gonzalez-Abraham R; Lutes CC; Lund LG; Caldwell D; Walker TR
    J Air Waste Manag Assoc; 2023 Apr; 73(4):258-270. PubMed ID: 36729994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An alternative generic subslab soil gas-to-indoor air attenuation factor for application in commercial, industrial, and other nonresidential settings.
    Hallberg KE; Levy LC; Gonzalez-Abraham R; Lutes CC; Lund LG; Caldwell D
    J Air Waste Manag Assoc; 2021 Sep; 71(9):1148-1158. PubMed ID: 33989123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the Role of Soil Texture in Vapor Intrusion from Groundwater Sources.
    Yao Y; Wang Y; Zhong Z; Tang M; Suuberg EM
    J Environ Qual; 2017 Jul; 46(4):776-784. PubMed ID: 28783798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Database examination, multivariate analysis, and machine learning: Predictions of vapor intrusion attenuation factors.
    Man J; Guo Y; Zhou Q; Yao Y
    Ecotoxicol Environ Saf; 2022 Sep; 242():113874. PubMed ID: 35843107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling capillary fringe effect on petroleum vapor intrusion from groundwater contamination.
    Yao Y; Mao F; Xiao Y; Luo J
    Water Res; 2019 Mar; 150():111-119. PubMed ID: 30508708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening houses for vapor intrusion risks: a multiple regression analysis approach.
    Johnston JE; Gibson JM
    Environ Sci Technol; 2013 Jun; 47(11):5595-602. PubMed ID: 23659435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental assessments on schools located on or near former industrial facilities: Feedback on attenuation factors for the prediction of indoor air quality.
    Derycke V; Coftier A; Zornig C; Léprond H; Scamps M; Gilbert D
    Sci Total Environ; 2018 Jun; 626():754-761. PubMed ID: 29396339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoforensics: Trees as bioindicators of potential indoor exposure via vapor intrusion.
    Wilson JL; Samaranayake VA; Limmer MA; Burken JG
    PLoS One; 2018; 13(2):e0193247. PubMed ID: 29451904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examining the role of sub-foundation soil texture in chlorinated vapor intrusion from groundwater sources with a two-layer numerical model.
    Yao Y; Xiao Y; Mao F; Chen H; Verginelli I
    J Hazard Mater; 2018 Oct; 359():544-553. PubMed ID: 30096605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Simulation of Land Drains as a Preferential Pathway for Vapor Intrusion into Buildings.
    Yao Y; Mao F; Ma S; Yao Y; Suuberg EM; Tang X
    J Environ Qual; 2017 Nov; 46(6):1424-1433. PubMed ID: 29293853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Air exchange rates and alternative vapor entry pathways to inform vapor intrusion exposure risk assessments.
    Reichman R; Roghani M; Willett EJ; Shirazi E; Pennell KG
    Rev Environ Health; 2017 Mar; 32(1-2):27-33. PubMed ID: 27837600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vapor intrusion attenuation factors relative to subslab and source, reconsidered in light of background data.
    Yao Y; Wu Y; Suuberg EM; Provoost J; Shen R; Ma J; Liu J
    J Hazard Mater; 2015 Apr; 286():553-61. PubMed ID: 25618001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sewer Gas: An Indoor Air Source of PCE to Consider During Vapor Intrusion Investigations.
    Pennell KG; Scammell MK; McClean MD; Ames J; Weldon B; Friguglietti L; Suuberg EM; Shen R; Indeglia PA; Heiger-Bernays WJ
    Ground Water Monit Remediat; 2013; 33(3):119-126. PubMed ID: 23950637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating the fate and transport of TCE from groundwater to indoor air.
    Yu S; Unger AJ; Parker B
    J Contam Hydrol; 2009 Jul; 107(3-4):140-61. PubMed ID: 19525028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid Flow Model for Predicting the Intrusion Rate of Subsurface Contaminant Vapors into Buildings.
    McAlary TA; Gallinatti J; Thrupp G; Wertz W; Mali D; Dawson H
    Environ Sci Technol; 2018 Aug; 52(15):8438-8445. PubMed ID: 29939732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vapor Intrusion Investigations and Decision-Making: A Critical Review.
    Ma J; McHugh T; Beckley L; Lahvis M; DeVaull G; Jiang L
    Environ Sci Technol; 2020 Jun; 54(12):7050-7069. PubMed ID: 32384239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examination of the influence of environmental factors on contaminant vapor concentration attenuation factors using the U.S. EPA's vapor intrusion database.
    Yao Y; Shen R; Pennell KG; Suuberg EM
    Environ Sci Technol; 2013 Jan; 47(2):906-13. PubMed ID: 23252837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Results of a long-term study of vapor intrusion at four large buildings at the NASA Ames Research Center.
    Brenner D
    J Air Waste Manag Assoc; 2010 Jun; 60(6):747-58. PubMed ID: 20565001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of vapor intrusion models.
    Yao Y; Shen R; Pennell KG; Suuberg EM
    Environ Sci Technol; 2013 Mar; 47(6):2457-70. PubMed ID: 23360069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.