These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30525136)

  • 1. Kinetic energy densities based on the fourth order gradient expansion: performance in different classes of materials and improvement via machine learning.
    Golub P; Manzhos S
    Phys Chem Chem Phys; 2018 Dec; 21(1):378-395. PubMed ID: 30525136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Condition on the Kohn-Sham kinetic energy and modern parametrization of the Thomas-Fermi density.
    Lee D; Constantin LA; Perdew JP; Burke K
    J Chem Phys; 2009 Jan; 130(3):034107. PubMed ID: 19173510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning of kinetic energy densities with target and feature smoothing: Better results with fewer training data.
    Manzhos S; Lüder J; Ihara M
    J Chem Phys; 2023 Dec; 159(23):. PubMed ID: 38112506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization and analysis of the Kohn-Sham kinetic energy density and its orbital-free description in molecules.
    Cancio AC; Stewart D; Kuna A
    J Chem Phys; 2016 Feb; 144(8):084107. PubMed ID: 26931681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Binding in Post-Kohn-Sham Orbital-Free DFT.
    Borgoo A; Green JA; Tozer DJ
    J Chem Theory Comput; 2014 Dec; 10(12):5338-45. PubMed ID: 26583217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-driven kinetic energy density fitting for orbital-free DFT: Linear vs Gaussian process regression.
    Manzhos S; Golub P
    J Chem Phys; 2020 Aug; 153(7):074104. PubMed ID: 32828090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Pauli energy to appraise the quality of approximate semilocal non-interacting kinetic energy density functionals.
    Liu S; Zhao D; Rong C; Lu T; Liu S
    J Chem Phys; 2019 May; 150(20):204106. PubMed ID: 31153167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalized nonlocal kinetic energy density functionals based on the von Weizsäcker functional.
    García-Aldea D; Alvarellos JE
    Phys Chem Chem Phys; 2012 Feb; 14(5):1756-67. PubMed ID: 22193246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic energy density study of confined noninteracting fermions: the importance of the angular momentum.
    Martín-Blas T; García-Aldea D; Alvarellos JE
    J Chem Phys; 2009 Jan; 130(3):034101. PubMed ID: 19173504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density.
    Seino J; Kageyama R; Fujinami M; Ikabata Y; Nakai H
    J Chem Phys; 2018 Jun; 148(24):241705. PubMed ID: 29960373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified Fourth-Order Kinetic Energy Gradient Expansion with Hartree Potential-Dependent Coefficients.
    Constantin LA; Fabiano E; Della Sala F
    J Chem Theory Comput; 2017 Sep; 13(9):4228-4239. PubMed ID: 28825815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing a parametrized Thomas-Fermi-Dirac-Weizsäcker density functional for atoms.
    Espinosa Leal LA; Karpenko A; Caro MA; Lopez-Acevedo O
    Phys Chem Chem Phys; 2015 Dec; 17(47):31463-71. PubMed ID: 25960416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laplacian-Level Kinetic Energy Approximations Based on the Fourth-Order Gradient Expansion: Global Assessment and Application to the Subsystem Formulation of Density Functional Theory.
    Laricchia S; Constantin LA; Fabiano E; Della Sala F
    J Chem Theory Comput; 2014 Jan; 10(1):164-79. PubMed ID: 26579900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laplacian-dependent models of the kinetic energy density: Applications in subsystem density functional theory with meta-generalized gradient approximation functionals.
    Śmiga S; Fabiano E; Constantin LA; Della Sala F
    J Chem Phys; 2017 Feb; 146(6):064105. PubMed ID: 28201888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate Reference Data for the Nonadditive, Noninteracting Kinetic Energy in Covalent Bonds.
    Nafziger J; Jiang K; Wasserman A
    J Chem Theory Comput; 2017 Feb; 13(2):577-586. PubMed ID: 28075588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate parameterization of the kinetic energy functional for calculations using exact-exchange.
    Kumar S; Sadigh B; Zhu S; Suryanarayana P; Hamel S; Gallagher B; Bulatov V; Klepeis J; Samanta A
    J Chem Phys; 2022 Jan; 156(2):024107. PubMed ID: 35032977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local behavior of the first-order gradient correction to the Thomas-Fermi kinetic energy functional.
    García-Aldea D; Martín-Blas T; Alvarellos JE
    J Chem Phys; 2009 Oct; 131(16):164117. PubMed ID: 19894937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the source of error in the Thomas-Fermi-von Weizsäcker density functional.
    Thapa B; Jing X; Pask JE; Suryanarayana P; Mazin II
    J Chem Phys; 2023 Jun; 158(21):. PubMed ID: 37259998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subsystem density functional theory with meta-generalized gradient approximation exchange-correlation functionals.
    Śmiga S; Fabiano E; Laricchia S; Constantin LA; Della Sala F
    J Chem Phys; 2015 Apr; 142(15):154121. PubMed ID: 25903880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate parameterization of the kinetic energy functional.
    Kumar S; Borda EL; Sadigh B; Zhu S; Hamel S; Gallagher B; Bulatov V; Klepeis J; Samanta A
    J Chem Phys; 2022 Jan; 156(2):024110. PubMed ID: 35032986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.