These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 30525367)
21. Effect of Concentration on the Electrochemistry and Speciation of the Magnesium Aluminum Chloride Complex Electrolyte Solution. See KA; Liu YM; Ha Y; Barile CJ; Gewirth AA ACS Appl Mater Interfaces; 2017 Oct; 9(41):35729-35739. PubMed ID: 28933814 [TBL] [Abstract][Full Text] [Related]
22. Multifunctional Additives Improve the Electrolyte Properties of Magnesium Borohydride Toward Magnesium-Sulfur Batteries. Xu H; Zhang Z; Li J; Qiao L; Lu C; Tang K; Dong S; Ma J; Liu Y; Zhou X; Cui G ACS Appl Mater Interfaces; 2018 Jul; 10(28):23757-23765. PubMed ID: 29945440 [TBL] [Abstract][Full Text] [Related]
23. Critical Role of the Interphase at Magnesium Electrodes in Chloride-Free, Simple Salt Electrolytes. Holc C; Dimogiannis K; Hopkinson E; Johnson LR ACS Appl Mater Interfaces; 2021 Jun; 13(25):29708-29713. PubMed ID: 34143598 [TBL] [Abstract][Full Text] [Related]
24. A Chlorine-Free Electrolyte Based on Non-nucleophilic Magnesium Bis(diisopropyl)amide and Ionic Liquid for Rechargeable Magnesium Batteries. Ren W; Wu D; NuLi Y; Zhang X; Yang J; Wang J ACS Appl Mater Interfaces; 2021 Jul; 13(28):32957-32967. PubMed ID: 34241994 [TBL] [Abstract][Full Text] [Related]
25. Enabling Magnesium Anodes by Tuning the Electrode/Electrolyte Interfacial Structure. Wen X; Yu Z; Zhao Y; Zhang J; Qiao R; Cheng L; Ban C; Guo J ACS Appl Mater Interfaces; 2021 Nov; 13(44):52461-52468. PubMed ID: 34719233 [TBL] [Abstract][Full Text] [Related]
26. Releasing Free Anions by High Donor Number Cosolvent in Noncorrosive Electrolytes of Commercially Available Magnesium Salts. Xiao J; Zhang X; Fan H; Lin Q; Ng ZS; Chen W; Zhang Y ACS Appl Mater Interfaces; 2024 Apr; 16(14):17673-17682. PubMed ID: 38533740 [TBL] [Abstract][Full Text] [Related]
27. Robust NaO2 Electrochemistry in Aprotic Na-O2 Batteries Employing Ethereal Electrolytes with a Protic Additive. Abate II; Thompson LE; Kim HC; Aetukuri NB J Phys Chem Lett; 2016 Jun; 7(12):2164-9. PubMed ID: 27214400 [TBL] [Abstract][Full Text] [Related]
28. Highly active electrolytes for rechargeable Mg batteries based on a [Mg2(μ-Cl)2](2+) cation complex in dimethoxyethane. Cheng Y; Stolley RM; Han KS; Shao Y; Arey BW; Washton NM; Mueller KT; Helm ML; Sprenkle VL; Liu J; Li G Phys Chem Chem Phys; 2015 May; 17(20):13307-14. PubMed ID: 25920549 [TBL] [Abstract][Full Text] [Related]
29. Adsorption and Thermal Decomposition of Electrolytes on Nanometer Magnesium Oxide: An in Situ Hu JZ; Jaegers NR; Chen Y; Han KS; Wang H; Murugesan V; Mueller KT ACS Appl Mater Interfaces; 2019 Oct; 11(42):38689-38696. PubMed ID: 31503448 [TBL] [Abstract][Full Text] [Related]
30. Existence of Solid Electrolyte Interphase in Mg Batteries: Mg/S Chemistry as an Example. Gao T; Hou S; Huynh K; Wang F; Eidson N; Fan X; Han F; Luo C; Mao M; Li X; Wang C ACS Appl Mater Interfaces; 2018 May; 10(17):14767-14776. PubMed ID: 29620854 [TBL] [Abstract][Full Text] [Related]
31. Anion Association Strength as a Unifying Descriptor for the Reversibility of Divalent Metal Deposition in Nonaqueous Electrolytes. Connell JG; Zorko M; Agarwal G; Yang M; Liao C; Assary RS; Strmcnik D; Markovic NM ACS Appl Mater Interfaces; 2020 Aug; 12(32):36137-36147. PubMed ID: 32667178 [TBL] [Abstract][Full Text] [Related]
32. Carbon Disulfide Cosolvent Electrolytes for High-Performance Lithium Sulfur Batteries. Gu S; Wen Z; Qian R; Jin J; Wang Q; Wu M; Zhuo S ACS Appl Mater Interfaces; 2016 Dec; 8(50):34379-34386. PubMed ID: 27998100 [TBL] [Abstract][Full Text] [Related]
34. Al-compatible boron-based electrolytes for rechargeable magnesium batteries. Ha JH; Lee B; Lee M; Yim T; Oh SH Chem Commun (Camb); 2020 Nov; 56(91):14163-14166. PubMed ID: 33079098 [TBL] [Abstract][Full Text] [Related]
35. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Doe RE; Han R; Hwang J; Gmitter AJ; Shterenberg I; Yoo HD; Pour N; Aurbach D Chem Commun (Camb); 2014 Jan; 50(2):243-5. PubMed ID: 24225903 [TBL] [Abstract][Full Text] [Related]
36. An Efficient Halogen-Free Electrolyte for Use in Rechargeable Magnesium Batteries. Tutusaus O; Mohtadi R; Arthur TS; Mizuno F; Nelson EG; Sevryugina YV Angew Chem Int Ed Engl; 2015 Jun; 54(27):7900-4. PubMed ID: 26013580 [TBL] [Abstract][Full Text] [Related]
37. Synthesis, Crystal Structure, and Electrochemical Properties of a Simple Magnesium Electrolyte for Magnesium/Sulfur Batteries. Li W; Cheng S; Wang J; Qiu Y; Zheng Z; Lin H; Nanda S; Ma Q; Xu Y; Ye F; Liu M; Zhou L; Zhang Y Angew Chem Int Ed Engl; 2016 May; 55(22):6406-10. PubMed ID: 27094220 [TBL] [Abstract][Full Text] [Related]
38. Modifications in coordination structure of Mg[TFSA] Mandai T; Tatesaka K; Soh K; Masu H; Choudhary A; Tateyama Y; Ise R; Imai H; Takeguchi T; Kanamura K Phys Chem Chem Phys; 2019 Jun; 21(23):12100-12111. PubMed ID: 31020982 [TBL] [Abstract][Full Text] [Related]
39. Nonaqueous magnesium electrochemistry and its application in secondary batteries. Aurbach D; Weissman I; Gofer Y; Levi E Chem Rec; 2003; 3(1):61-73. PubMed ID: 12552532 [TBL] [Abstract][Full Text] [Related]
40. Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries. Eshetu GG; Judez X; Li C; Bondarchuk O; Rodriguez-Martinez LM; Zhang H; Armand M Angew Chem Int Ed Engl; 2017 Nov; 56(48):15368-15372. PubMed ID: 28994228 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]