These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 30525384)

  • 1. Diffusion-Driven Al-Doping of ZnO Nanorods and Stretchable Gas Sensors Made of Doped ZnO Nanorods/Ag Nanowires Bilayers.
    Namgung G; Ta QTH; Yang W; Noh JS
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1411-1419. PubMed ID: 30525384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of nanograined ZnO nanowires and their enhanced gas sensing properties.
    Park S; An S; Ko H; Jin C; Lee C
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3650-6. PubMed ID: 22746969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doping Ag in ZnO Nanorods to Improve the Performance of Related Enzymatic Glucose Sensors.
    Zhou F; Jing W; Liu P; Han D; Jiang Z; Wei Z
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28953217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flat-Type Gas Sensors Based on ZnO Nanorod Arrays.
    Pan YW; Peng SJ; Ma YL; CaO PJ; Hu F
    J Nanosci Nanotechnol; 2020 Dec; 20(12):7800-7807. PubMed ID: 32711661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ZnO nanorod/porous silicon nanowire hybrid structures as highly-sensitive NO2 gas sensors at room temperature.
    Liao J; Li Z; Wang G; Chen C; Lv S; Li M
    Phys Chem Chem Phys; 2016 Feb; 18(6):4835-41. PubMed ID: 26804157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of Fe Doped ZnO Nanowire Arrays that Detect Formaldehyde Gas.
    Jeon YS; Seo HW; Kim SH; Kim YK
    J Nanosci Nanotechnol; 2016 May; 16(5):4814-9. PubMed ID: 27483827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films.
    Hsu CH; Chen DH
    Nanotechnology; 2010 Jul; 21(28):285603. PubMed ID: 20562490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced density control of Al:ZnO nanowires via one-by-one coupling of nanowires and pyramids.
    Kuo CL; Liang YH; Huang JH; Wang RC; Huang JL; Chang HR; Liu CP
    J Nanosci Nanotechnol; 2010 Feb; 10(2):893-7. PubMed ID: 20352733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and Electrical Characterization of Pure and Al-Doped ZnO Nanorods.
    Panžić I; Capan I; Brodar T; Bafti A; Mandić V
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UV-enhanced NO2 gas sensing properties of SnO2-core/ZnO-shell nanowires at room temperature.
    Park S; An S; Mun Y; Lee C
    ACS Appl Mater Interfaces; 2013 May; 5(10):4285-92. PubMed ID: 23627276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negative Effects of Annealed Seed Layer on the Performance of ZnO-Nanorods Based Nitric Oxide Gas Sensor.
    Singh P; Simanjuntak FM; Hu LL; Tseng TY; Zan HW; Chu JP
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly selective and recyclable sensor for the electroanalysis of phosphothioate pesticides using silver-doped ZnO nanorods arrays.
    Zhai X; Xu F; Li Y; Jun F; Li S; Zhang C; Wang H; Cao B
    Anal Chim Acta; 2021 Apr; 1152():338285. PubMed ID: 33648640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of cation doping on the morphology, optical and structural properties of highly oriented wurtzite ZnO-nanorod arrays grown by a hydrothermal method.
    Hassanpour A; Guo P; Shen S; Bianucci P
    Nanotechnology; 2017 Oct; 28(43):435707. PubMed ID: 28786398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive Room Temperature Photoluminescence-Based Sensing of H2S with Novel CuO-ZnO Nanorods.
    Liu X; Du B; Sun Y; Yu M; Yin Y; Tang W; Chen C; Sun L; Yang B; Cao W; Ashfold MN
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16379-85. PubMed ID: 27258907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of Mg-doped ZnO nanorod arrays.
    Liao HC; Chen SY; Peng CH; Lin CC; Cheng SY
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4696-700. PubMed ID: 21128481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic Effects of a Combination of Cr2O3-Functionalization and UV-Irradiation Techniques on the Ethanol Gas Sensing Performance of ZnO Nanorod Gas Sensors.
    Park S; Sun GJ; Jin C; Kim HW; Lee S; Lee C
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2805-11. PubMed ID: 26751000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Sensitive Picric Acid Chemical Sensor Based on Samarium (Sm) Doped ZnO Nanorods.
    Al-Hadeethi Y; Umar A; Singh K; Ibrahim AA; Al-Heniti SH; Raffah BM; Cochis A
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3637-3642. PubMed ID: 30744798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confined Formation of Ultrathin ZnO Nanorods/Reduced Graphene Oxide Mesoporous Nanocomposites for High-Performance Room-Temperature NO
    Xia Y; Wang J; Xu JL; Li X; Xie D; Xiang L; Komarneni S
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35454-35463. PubMed ID: 27966870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective Oxidizing Gas Sensing and Dominant Sensing Mechanism of n-CaO-Decorated n-ZnO Nanorod Sensors.
    Sun GJ; Lee JK; Choi S; Lee WI; Kim HW; Lee C
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9975-9985. PubMed ID: 28244727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing Methane Gas Sensing through Defect Engineering in Ag-Ru Co-doped ZnO Nanorods.
    Li X; Hu H; Tan T; Sun M; Bao Y; Huang Z; Muhammad S; Xia X; Gao Y
    ACS Appl Mater Interfaces; 2024 May; 16(20):26395-26405. PubMed ID: 38728440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.