These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30525395)

  • 1. Ultrathin Conformable Organic Artificial Synapse for Wearable Intelligent Device Applications.
    Jang S; Jang S; Lee EH; Kang M; Wang G; Kim TW
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1071-1080. PubMed ID: 30525395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrathin AlO
    Bu Y; Su J; Li H; Chen D; Xu T
    Nanotechnology; 2023 May; 34(31):. PubMed ID: 37116475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Carbon Nanotube Synaptic Transistor for Neurological Electronic Skin Applications.
    Wan H; Cao Y; Lo LW; Zhao J; SepĂșlveda N; Wang C
    ACS Nano; 2020 Aug; 14(8):10402-10412. PubMed ID: 32678612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferroelectric artificial synapse for neuromorphic computing and flexible applications.
    Li QX; Liu YL; Cao YY; Wang TY; Zhu H; Ji L; Liu WJ; Sun QQ; Zhang DW; Chen L
    Fundam Res; 2023 Nov; 3(6):960-966. PubMed ID: 38933007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible organic field-effect transistor arrays for wearable neuromorphic device applications.
    Li QX; Wang TY; Wang XL; Chen L; Zhu H; Wu XH; Sun QQ; Zhang DW
    Nanoscale; 2020 Nov; 12(45):23150-23158. PubMed ID: 33191413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stretchable and conformable synapse memristors for wearable and implantable electronics.
    Yang M; Zhao X; Tang Q; Cui N; Wang Z; Tong Y; Liu Y
    Nanoscale; 2018 Oct; 10(38):18135-18144. PubMed ID: 30152837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultralow Power Wearable Organic Ferroelectric Device for Optoelectronic Neuromorphic Computing.
    Li Q; Wang T; Fang Y; Hu X; Tang C; Wu X; Zhu H; Ji L; Sun QQ; Zhang DW; Chen L
    Nano Lett; 2022 Aug; 22(15):6435-6443. PubMed ID: 35737934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Progress on Neuromorphic Synapse Electronics: From Emerging Materials, Devices, to Neural Networks.
    Zhao Y; Jiang J
    J Nanosci Nanotechnol; 2018 Dec; 18(12):8003-8015. PubMed ID: 30189917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Design of 3D-Interface Architecture in an Ultralow-Power, Electrospun Single-Fiber Synaptic Transistor for Neuromorphic Computing.
    Liu D; Shi Q; Dai S; Huang J
    Small; 2020 Apr; 16(13):e1907472. PubMed ID: 32068955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin, flexible and multimodal tactile sensors based on organic field-effect transistors.
    Viola FA; Spanu A; Ricci PC; Bonfiglio A; Cosseddu P
    Sci Rep; 2018 May; 8(1):8073. PubMed ID: 29795264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Performance Organic Synaptic Transistors with an Ultrathin Active Layer for Neuromorphic Computing.
    Yang Q; Yang H; Lv D; Yu R; Li E; He L; Chen Q; Chen H; Guo T
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8672-8681. PubMed ID: 33565852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial Synapses Based on in-Plane Gate Organic Electrochemical Transistors.
    Qian C; Sun J; Kong LA; Gou G; Yang J; He J; Gao Y; Wan Q
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):26169-26175. PubMed ID: 27608136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance, Ultrathin, Ultraflexible Organic Thin-Film Transistor Array Via Solution Process.
    Ren H; Cui N; Tang Q; Tong Y; Zhao X; Liu Y
    Small; 2018 Jul; ():e1801020. PubMed ID: 29999243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-dimensional organic artificial multi-synapses enabling electronic textile neural network for wearable neuromorphic applications.
    Ham S; Kang M; Jang S; Jang J; Choi S; Kim TW; Wang G
    Sci Adv; 2020 Jul; 6(28):. PubMed ID: 32937532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chitosan-Based Polysaccharide-Gated Flexible Indium Tin Oxide Synaptic Transistor with Learning Abilities.
    Yu F; Zhu LQ; Gao WT; Fu YM; Xiao H; Tao J; Zhou JM
    ACS Appl Mater Interfaces; 2018 May; 10(19):16881-16886. PubMed ID: 29687712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial Optoelectronic Synapses Based on Ferroelectric Field-Effect Enabled 2D Transition Metal Dichalcogenide Memristive Transistors.
    Luo ZD; Xia X; Yang MM; Wilson NR; Gruverman A; Alexe M
    ACS Nano; 2020 Jan; 14(1):746-754. PubMed ID: 31887010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificially Intelligent Tactile Ferroelectric Skin.
    Lee K; Jang S; Kim KL; Koo M; Park C; Lee S; Lee J; Wang G; Park C
    Adv Sci (Weinh); 2020 Nov; 7(22):2001662. PubMed ID: 33240753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Ultraviolet Light Stimulated Synaptic Transistors Based on Poly(3-hexylthiophene) Ultrathin Films.
    Jiang L; Xu C; Wu X; Zhao X; Zhang L; Zhang G; Wang X; Qiu L
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11718-11726. PubMed ID: 35213133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bioinspired Ultra Flexible Artificial van der Waals 2D-MoS
    Hwang Y; Park B; Hwang S; Choi SW; Kim HS; Kim AR; Choi JW; Yoon J; Kwon JD; Kim Y
    Small Methods; 2023 Jul; 7(7):e2201719. PubMed ID: 36960927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrathin and Conformable Lead Halide Perovskite Photodetector Arrays for Potential Application in Retina-Like Vision Sensing.
    Wu W; Han X; Li J; Wang X; Zhang Y; Huo Z; Chen Q; Sun X; Xu Z; Tan Y; Pan C; Pan A
    Adv Mater; 2021 Mar; 33(9):e2006006. PubMed ID: 33475208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.