BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30525421)

  • 1. Atomistic Mechanisms of Mg Insertion Reactions in Group XIV Anodes for Mg-Ion Batteries.
    Wang M; Yuwono JA; Vasudevan V; Birbilis N; Medhekar NV
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):774-783. PubMed ID: 30525421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shedding X-ray Light on the Interfacial Electrochemistry of Silicon Anodes for Li-Ion Batteries.
    Cao C; Shyam B; Wang J; Toney MF; Steinrück HG
    Acc Chem Res; 2019 Sep; 52(9):2673-2683. PubMed ID: 31479242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realizing the full potential of insertion anodes for Mg-ion batteries through the nanostructuring of Sn.
    Parent LR; Cheng Y; Sushko PV; Shao Y; Liu J; Wang CM; Browning ND
    Nano Lett; 2015 Feb; 15(2):1177-82. PubMed ID: 25531653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Group IVA Element (Si, Ge, Sn)-Based Alloying/Dealloying Anodes as Negative Electrodes for Full-Cell Lithium-Ion Batteries.
    Liu D; Liu ZJ; Li X; Xie W; Wang Q; Liu Q; Fu Y; He D
    Small; 2017 Dec; 13(45):. PubMed ID: 29024532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes.
    Wei S; Choudhury S; Tu Z; Zhang K; Archer LA
    Acc Chem Res; 2018 Jan; 51(1):80-88. PubMed ID: 29227617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries.
    Wu XL; Guo YG; Wan LJ
    Chem Asian J; 2013 Sep; 8(9):1948-58. PubMed ID: 23650077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-Principles Dynamics Investigation of Germanium as an Anode Material in Multivalent-Ion Batteries.
    Kim C; Hwang U; Lee S; Han YK
    Nanomaterials (Basel); 2023 Oct; 13(21):. PubMed ID: 37947713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NiSi(x)/a-Si Nanowires with Interfacial a-Ge as Anodes for High-Rate Lithium-Ion Batteries.
    Han X; Chen H; Li X; Lai S; Xu Y; Li C; Chen S; Yang Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):673-9. PubMed ID: 26670955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Electrochemical Properties of Amorphous Carbon Coated Sn Anode Material for Lithium Ion Batteries and Sodium Ion Batteries.
    Choi JS; Lee HJ; Ha JK; Cho KK
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6459-6462. PubMed ID: 29677814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Mixed Salt Electrolytes to Stabilize Silicon Anodes for Lithium-Ion Batteries via in Situ Formation of Li-M-Si Ternaries (M = Mg, Zn, Al, Ca).
    Han B; Liao C; Dogan F; Trask SE; Lapidus SH; Vaughey JT; Key B
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29780-29790. PubMed ID: 31318201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enabling Mg metal anodes rechargeable in conventional electrolytes by fast ionic transport interphase.
    Lv R; Guan X; Zhang J; Xia Y; Luo J
    Natl Sci Rev; 2020 Feb; 7(2):333-341. PubMed ID: 34692049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel high-performance anodic materials for lithium ion batteries: two-dimensional Sn-X (X = C, Si, and Ge) alloy monolayers.
    Zhu P; Zu Y; Kuai Y; Gao S; Wu G; Chen W; Wu L; Chen C; Liu G
    Phys Chem Chem Phys; 2021 Dec; 23(46):26428-26437. PubMed ID: 34797354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries.
    Zhang Y; Du N; Yang D
    Nanoscale; 2019 Nov; 11(41):19086-19104. PubMed ID: 31538999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavior of Germanium and Silicon Nanowire Anodes with Ionic Liquid Electrolytes.
    Kim GT; Kennedy T; Brandon M; Geaney H; Ryan KM; Passerini S; Appetecchi GB
    ACS Nano; 2017 Jun; 11(6):5933-5943. PubMed ID: 28530820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile Synthesis of Amorphous Ge Supported by Ni Nanopyramid Arrays as an Anode Material for Sodium-Ion Batteries.
    Wu H; Liu W; Zheng L; Zhu D; Du N; Xiao C; Su L; Wang L
    ChemistryOpen; 2019 Mar; 8(3):298-303. PubMed ID: 30886787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Si and Ge-Based Anode Materials for Li-, Na-, and K-Ion Batteries: A Perspective from Structure to Electrochemical Mechanism.
    Loaiza LC; Monconduit L; Seznec V
    Small; 2020 Feb; 16(5):e1905260. PubMed ID: 31922657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sn modified nanoporous Ge for improved lithium storage performance.
    Yan Y; Liu Y; Zhang Y; Qin C; Yu H; Bakenov Z; Wang Z
    J Colloid Interface Sci; 2021 Nov; 602():563-572. PubMed ID: 34147749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composition- and size-modulated porous bismuth-tin biphase alloys as anodes for advanced magnesium ion batteries.
    Niu J; Yin K; Gao H; Song M; Ma W; Peng Z; Zhang Z
    Nanoscale; 2019 Aug; 11(32):15279-15288. PubMed ID: 31386748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.