These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 30525425)
1. Operation Protocols To Improve Durability of Protonic Ceramic Fuel Cells. Park KY; Kim YD; Lee JI; Saqib M; Shin JS; Seo Y; Kim JH; Lim HT; Park JY ACS Appl Mater Interfaces; 2019 Jan; 11(1):457-468. PubMed ID: 30525425 [TBL] [Abstract][Full Text] [Related]
2. Rapid Laser Reactive Sintering for Sustainable and Clean Preparation of Protonic Ceramics. Mu S; Huang H; Ishii A; Hong Y; Santomauro A; Zhao Z; Zou M; Peng F; Brinkman KS; Xiao H; Tong J ACS Omega; 2020 May; 5(20):11637-11642. PubMed ID: 32478254 [TBL] [Abstract][Full Text] [Related]
3. Enhanced Proton Conduction with Low Oxygen Vacancy Concentration and Favorable Hydration for Protonic Ceramic Fuel Cells Cathode. Wang X; Li W; Zhou C; Xu M; Hu Z; Pao CW; Zhou W; Shao Z ACS Appl Mater Interfaces; 2023 Jan; 15(1):1339-1347. PubMed ID: 36579819 [TBL] [Abstract][Full Text] [Related]
4. Lattice Incorporation of Cu Yang S; Zhang S; Sun C; Ye X; Wen Z ACS Appl Mater Interfaces; 2018 Dec; 10(49):42387-42396. PubMed ID: 30422623 [TBL] [Abstract][Full Text] [Related]
5. Oxygen Electrode PrBa Bai H; Zhang Y; Chu J; Zhou Q; Lan H; Zhou J ACS Appl Mater Interfaces; 2023 Aug; 15(32):38581-38591. PubMed ID: 37535454 [TBL] [Abstract][Full Text] [Related]
6. Tailoring an Interface Microstructure for High-Performance Reversible Protonic Ceramic Electrochemical Cells via Soft Lithography. Lee C; Shin SS; Kim J; Choi J; Choi M; Shin HH ACS Appl Mater Interfaces; 2022 Jul; 14(28):32124-32133. PubMed ID: 35790382 [TBL] [Abstract][Full Text] [Related]
7. Improved mechanical strength, proton conductivity and power density in an 'all-protonic' ceramic fuel cell at intermediate temperature. Azad AK; Abdalla AM; Afif A; Azad A; Afroze S; Idris AC; Park JY; Saqib M; Radenahmad N; Hossain S; Elius IB; Al-Mamun M; Zaini J; Al-Hinai A; Reza MS; Irvine JTS Sci Rep; 2021 Sep; 11(1):19382. PubMed ID: 34588598 [TBL] [Abstract][Full Text] [Related]
8. A-Site Nonstoichiometric Ba Wei K; Guo Z; Chen F; Liu H; Ling Y ACS Appl Mater Interfaces; 2023 Oct; 15(42):49785-49793. PubMed ID: 37816140 [TBL] [Abstract][Full Text] [Related]
9. Reverse Atom Capture on Perovskite Surface Enabling Robust and Efficient Cathode for Protonic Ceramic Fuel Cells. Zhao S; Ma W; Wang W; Huang Y; Wang J; Wang S; Shu Z; He B; Zhao L Adv Mater; 2024 Jul; 36(27):e2405052. PubMed ID: 38652767 [TBL] [Abstract][Full Text] [Related]
10. Rapid Gas-Phase Synthesis of the Perovskite-Type BaCe Wu Z; Zhang Y; Liu Z; Ma H; Jin X; Yang G; Shi Y; Shao Z; Li S ACS Appl Mater Interfaces; 2022 Oct; 14(42):47568-47577. PubMed ID: 36228663 [TBL] [Abstract][Full Text] [Related]
11. High-Performance Ammonia Protonic Ceramic Fuel Cells Using a Pd Inter-Catalyst. Jeong HJ; Chang W; Seo BG; Choi YS; Kim KH; Kim DH; Shim JH Small; 2023 Jun; 19(22):e2208149. PubMed ID: 36866499 [TBL] [Abstract][Full Text] [Related]
12. Building Ruddlesden-Popper and Single Perovskite Nanocomposites: A New Strategy to Develop High-Performance Cathode for Protonic Ceramic Fuel Cells. Shi H; Su C; Xu X; Pan Y; Yang G; Ran R; Shao Z Small; 2021 Sep; 17(35):e2101872. PubMed ID: 34254432 [TBL] [Abstract][Full Text] [Related]
13. Designing a protonic ceramic fuel cell with novel electrochemically active oxygen electrodes based on doped Nd Lyagaeva J; Danilov N; Tarutin A; Vdovin G; Medvedev D; Demin A; Tsiakaras P Dalton Trans; 2018 Jun; 47(24):8149-8157. PubMed ID: 29881842 [TBL] [Abstract][Full Text] [Related]
15. Application of a Triple-Conducting Heterostructure Electrolyte of Ba Rauf S; Zhu B; Yousaf Shah MAK; Tayyab Z; Attique S; Ali N; Mushtaq N; Wang B; Yang C; Asghar MI; Lund PD ACS Appl Mater Interfaces; 2020 Aug; 12(31):35071-35080. PubMed ID: 32667772 [TBL] [Abstract][Full Text] [Related]
16. Deconvolution of Water-Splitting on the Triple-Conducting Ruddlesden-Popper-Phase Anode for Protonic Ceramic Electrolysis Cells. Tian H; Li W; Ma L; Yang T; Guan B; Shi W; Kalapos TL; Liu X ACS Appl Mater Interfaces; 2020 Nov; 12(44):49574-49585. PubMed ID: 33079527 [TBL] [Abstract][Full Text] [Related]
17. Ultrafast Sintered Composite Cathode Incorporating a Negative Thermal Expansion Material for High-Performance Protonic Ceramic Fuel Cells. Tahir A; Belotti A; Song Y; Wang Y; Maradesa A; Li J; Tian Y; Ciucci F ACS Appl Mater Interfaces; 2024 Aug; 16(34):44645-44654. PubMed ID: 39149936 [TBL] [Abstract][Full Text] [Related]
18. A Durable Ruddlesden-Popper Cathode for Protonic Ceramic Fuel Cells. Huan D; Zhang L; Li X; Xie Y; Shi N; Xue S; Xia C; Peng R; Lu Y ChemSusChem; 2020 Sep; 13(18):4994-5003. PubMed ID: 32671967 [TBL] [Abstract][Full Text] [Related]
19. Synergistic Coupling of Proton Conductors BaZr Li W; Guan B; Ma L; Tian H; Liu X ACS Appl Mater Interfaces; 2019 May; 11(20):18323-18330. PubMed ID: 31051074 [TBL] [Abstract][Full Text] [Related]
20. Sintering-induced cation displacement in protonic ceramics and way for its suppression. Liu Z; Song Y; Xiong X; Zhang Y; Cui J; Zhu J; Li L; Zhou J; Zhou C; Hu Z; Kim G; Ciucci F; Shao Z; Wang JQ; Zhang L Nat Commun; 2023 Dec; 14(1):7984. PubMed ID: 38042884 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]