BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30525515)

  • 1. Nanofibers Produced from Agro-Industrial Plant Waste Using Entirely Enzymatic Pretreatments.
    Holland C; Perzon A; Cassland PRC; Jensen JP; Langebeck B; Sørensen OB; Whale E; Hepworth D; Plaice-Inglis R; Moestrup Ø; Ulvskov P; Jørgensen B
    Biomacromolecules; 2019 Jan; 20(1):443-453. PubMed ID: 30525515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustainable production of cellulose nanofiber gels and paper from sugar beet waste using enzymatic pre-treatment.
    Perzon A; Jørgensen B; Ulvskov P
    Carbohydr Polym; 2020 Feb; 230():115581. PubMed ID: 31887882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose nanofibers from lignocellulosic biomass of lemongrass using enzymatic hydrolysis: characterization and cytotoxicity assessment.
    Kumari P; Pathak G; Gupta R; Sharma D; Meena A
    Daru; 2019 Dec; 27(2):683-693. PubMed ID: 31654377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel processing parameters for the extraction of cellulose nanofibres (CNF) from environmentally benign pineapple leaf fibres (PALF): Structure-property relationships.
    Ravindran L; M S S; Thomas S
    Int J Biol Macromol; 2019 Jun; 131():858-870. PubMed ID: 30904530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils.
    Nie S; Zhang K; Lin X; Zhang C; Yan D; Liang H; Wang S
    Carbohydr Polym; 2018 Feb; 181():1136-1142. PubMed ID: 29253942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp.
    Li M; Wang LJ; Li D; Cheng YL; Adhikari B
    Carbohydr Polym; 2014 Feb; 102():136-43. PubMed ID: 24507265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic hydrolysis of plant polysaccharides: substrates for fermentation.
    Dekker RF
    Braz J Med Biol Res; 1989; 22(12):1441-56. PubMed ID: 2701426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear and nonlinear oscillatory rheology of chemically pretreated and non-pretreated cellulose nanofiber suspensions.
    Song HY; Park SY; Kim S; Youn HJ; Hyun K
    Carbohydr Polym; 2022 Jan; 275():118765. PubMed ID: 34742451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current Progress in Rheology of Cellulose Nanofibril Suspensions.
    Nechyporchuk O; Belgacem MN; Pignon F
    Biomacromolecules; 2016 Jul; 17(7):2311-20. PubMed ID: 27310523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose nanofibers production using a set of recombinant enzymes.
    Rossi BR; Pellegrini VOA; Cortez AA; Chiromito EMS; Carvalho AJF; Pinto LO; Rezende CA; Mastelaro VR; Polikarpov I
    Carbohydr Polym; 2021 Mar; 256():117510. PubMed ID: 33483031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined bleaching and hydrolysis for isolation of cellulose nanofibrils from waste sackcloth.
    Cao Y; Jiang Y; Song Y; Cao S; Miao M; Feng X; Fang J; Shi L
    Carbohydr Polym; 2015 Oct; 131():152-8. PubMed ID: 26256171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis.
    Zheng Q; Zhou T; Wang Y; Cao X; Wu S; Zhao M; Wang H; Xu M; Zheng B; Zheng J; Guan X
    Sci Rep; 2018 Jan; 8(1):1321. PubMed ID: 29358729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved CARV process for bioethanol production from a mixture of sugar beet mash and potato mash.
    Yun MS; Park JY; Arakane M; Shiroma R; Ike M; Tamiya S; Takahashi H; Tokuyasu K
    Biosci Biotechnol Biochem; 2011; 75(3):602-4. PubMed ID: 21389604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core-shell cellulose nanofibers for biocomposites - nanostructural effects in hydrated state.
    Prakobna K; Terenzi C; Zhou Q; Furó I; Berglund LA
    Carbohydr Polym; 2015 Jul; 125():92-102. PubMed ID: 25857964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Production and Application of Cellulose Nanofibers to Improve Recycled Paper Production.
    Balea A; Sanchez-Salvador JL; Monte MC; Merayo N; Negro C; Blanco A
    Molecules; 2019 May; 24(9):. PubMed ID: 31075959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward Semistructural Cellulose Nanocomposites: The Need for Scalable Processing and Interface Tailoring.
    Ansari F; Berglund LA
    Biomacromolecules; 2018 Jul; 19(7):2341-2350. PubMed ID: 29577729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alkaline treatment combined with enzymatic hydrolysis for efficient cellulose nanofibrils production.
    Banvillet G; Depres G; Belgacem N; Bras J
    Carbohydr Polym; 2021 Mar; 255():117383. PubMed ID: 33436212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An aggregated understanding of the influence of aqueous ammonia pretreatment on the physical deconstruction of cell walls in sugar beet pulp.
    Xue H; Qin R; Liu Y; Yuan L; Li G
    Bioprocess Biosyst Eng; 2023 Oct; 46(10):1427-1435. PubMed ID: 37490146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015; 127():101-9. PubMed ID: 25965462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of lipase from Burkholderia cepacia in the degradation of agro-industrial effluent.
    Mello Bueno PR; de Oliveira TF; Castiglioni GL; Soares Júnior MS; Ulhoa CJ
    Water Sci Technol; 2015; 71(7):957-64. PubMed ID: 25860696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.