These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30525557)

  • 1. π-Bond Character in Metal-Alkyl Compounds for C-H Activation: How, When, and Why?
    Gordon CP; Culver DB; Conley MP; Eisenstein O; Andersen RA; Copéret C
    J Am Chem Soc; 2019 Jan; 141(1):648-656. PubMed ID: 30525557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon-13 NMR Chemical Shift: A Descriptor for Electronic Structure and Reactivity of Organometallic Compounds.
    Gordon CP; Raynaud C; Andersen RA; Copéret C; Eisenstein O
    Acc Chem Res; 2019 Aug; 52(8):2278-2289. PubMed ID: 31339693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR chemical shift analysis decodes olefin oligo- and polymerization activity of d
    Gordon CP; Shirase S; Yamamoto K; Andersen RA; Eisenstein O; Copéret C
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):E5867-E5876. PubMed ID: 29891699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular and supported Ti(iii)-alkyls: efficient ethylene polymerization driven by the π-character of metal-carbon bonds and back donation from a singly occupied molecular orbital.
    Ashuiev A; Allouche F; Wili N; Searles K; Klose D; Copéret C; Jeschke G
    Chem Sci; 2020 Nov; 12(2):780-792. PubMed ID: 34163812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metathesis Activity Encoded in the Metallacyclobutane Carbon-13 NMR Chemical Shift Tensors.
    Gordon CP; Yamamoto K; Liao WC; Allouche F; Andersen RA; Copéret C; Raynaud C; Eisenstein O
    ACS Cent Sci; 2017 Jul; 3(7):759-768. PubMed ID: 28776018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partial Double Metal-Carbon Bonding Model in Transition Metal Methyl Compounds.
    Lin X; Mo Y
    Inorg Chem; 2022 Feb; 61(6):2892-2902. PubMed ID: 35104122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal Alkyls with Alkylidynic Metal-Carbon Bond Character: Key Electronic Structures in Alkane Metathesis Precatalysts.
    Gordon CP; Copéret C
    Angew Chem Int Ed Engl; 2020 Apr; 59(18):7035-7041. PubMed ID: 32026552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Half-sandwich rare-earth-catalyzed olefin polymerization, carbometalation, and hydroarylation.
    Nishiura M; Guo F; Hou Z
    Acc Chem Res; 2015 Aug; 48(8):2209-20. PubMed ID: 26214733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactions of late transition metal complexes with molecular oxygen.
    Boisvert L; Goldberg KI
    Acc Chem Res; 2012 Jun; 45(6):899-910. PubMed ID: 22578038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The sigma-CAM Mechanism: sigma complexes as the basis of sigma-bond metathesis at late-transition-metal centers.
    Perutz RN; Sabo-Etienne S
    Angew Chem Int Ed Engl; 2007; 46(15):2578-92. PubMed ID: 17380532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction of vinyl chloride with late transition metal olefin polymerization catalysts.
    Foley SR; Stockland RA; Shen H; Jordan RF
    J Am Chem Soc; 2003 Apr; 125(14):4350-61. PubMed ID: 12670259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and computational evidence for a boron-assisted, sigma-bond metathesis pathway for alkane borylation.
    Webster CE; Fan Y; Hall MB; Kunz D; Hartwig JF
    J Am Chem Soc; 2003 Jan; 125(4):858-9. PubMed ID: 12537470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C-H bond activation reactions of ethers that generate iridium carbenes.
    Conejero S; Paneque M; Poveda ML; Santos LL; Carmona E
    Acc Chem Res; 2010 Apr; 43(4):572-80. PubMed ID: 20112992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of Rhodium-Catalyzed C-H Functionalization: Advances in Theoretical Investigation.
    Qi X; Li Y; Bai R; Lan Y
    Acc Chem Res; 2017 Nov; 50(11):2799-2808. PubMed ID: 29112396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consequences of metal-oxide interconversion for C-H bond activation during CH4 reactions on Pd catalysts.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2013 Oct; 135(41):15425-42. PubMed ID: 24083571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C-F and C-H bond activation of fluorobenzenes and fluoropyridines at transition metal centers: how fluorine tips the scales.
    Clot E; Eisenstein O; Jasim N; Macgregor SA; McGrady JE; Perutz RN
    Acc Chem Res; 2011 May; 44(5):333-48. PubMed ID: 21410234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal alkyls programmed to generate metal alkylidenes by α-H abstraction: prognosis from NMR chemical shift.
    Gordon CP; Yamamoto K; Searles K; Shirase S; Andersen RA; Eisenstein O; Copéret C
    Chem Sci; 2018 Feb; 9(7):1912-1918. PubMed ID: 29675237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DFT calculations of d0 M(NR)(CHtBu)(X)(Y) (M = Mo, W; R = CPh3, 2,6-iPr-C6H3; X and Y = CH2tBu, OtBu, OSi(OtBu)3) olefin metathesis catalysts: structural, spectroscopic and electronic properties.
    Poater A; Solans-Monfort X; Clot E; Copéret C; Eisenstein O
    Dalton Trans; 2006 Jul; (25):3077-87. PubMed ID: 16786066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of activation of a hafnium pyridyl-amide olefin polymerization catalyst: ligand modification by monomer.
    Froese RD; Hustad PD; Kuhlman RL; Wenzel TT
    J Am Chem Soc; 2007 Jun; 129(25):7831-40. PubMed ID: 17542583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.