These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 30525562)
1. Bioinspired Metal-Organic Framework Catalysts for Selective Methane Oxidation to Methanol. Baek J; Rungtaweevoranit B; Pei X; Park M; Fakra SC; Liu YS; Matheu R; Alshmimri SA; Alshehri S; Trickett CA; Somorjai GA; Yaghi OM J Am Chem Soc; 2018 Dec; 140(51):18208-18216. PubMed ID: 30525562 [TBL] [Abstract][Full Text] [Related]
2. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts. Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K Acc Chem Res; 2018 Oct; 51(10):2382-2390. PubMed ID: 30207444 [TBL] [Abstract][Full Text] [Related]
3. Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): a DFT and QM/MM study. Yoshizawa K; Shiota Y J Am Chem Soc; 2006 Aug; 128(30):9873-81. PubMed ID: 16866545 [TBL] [Abstract][Full Text] [Related]
4. Selective oxidation of methane by the bis(mu-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. Groothaert MH; Smeets PJ; Sels BF; Jacobs PA; Schoonheydt RA J Am Chem Soc; 2005 Feb; 127(5):1394-5. PubMed ID: 15686370 [TBL] [Abstract][Full Text] [Related]
5. Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase. Balasubramanian R; Rosenzweig AC Acc Chem Res; 2007 Jul; 40(7):573-80. PubMed ID: 17444606 [TBL] [Abstract][Full Text] [Related]
6. Identification of the valence and coordination environment of the particulate methane monooxygenase copper centers by advanced EPR characterization. Culpepper MA; Cutsail GE; Gunderson WA; Hoffman BM; Rosenzweig AC J Am Chem Soc; 2014 Aug; 136(33):11767-75. PubMed ID: 25059917 [TBL] [Abstract][Full Text] [Related]
8. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Woertink JS; Smeets PJ; Groothaert MH; Vance MA; Sels BF; Schoonheydt RA; Solomon EI Proc Natl Acad Sci U S A; 2009 Nov; 106(45):18908-13. PubMed ID: 19864626 [TBL] [Abstract][Full Text] [Related]
9. Role of tyrosine residue in methane activation at the dicopper site of particulate methane monooxygenase: a density functional theory study. Shiota Y; Juhász G; Yoshizawa K Inorg Chem; 2013 Jul; 52(14):7907-17. PubMed ID: 23808646 [TBL] [Abstract][Full Text] [Related]
10. Oxidation of methane by a biological dicopper centre. Balasubramanian R; Smith SM; Rawat S; Yatsunyk LA; Stemmler TL; Rosenzweig AC Nature; 2010 May; 465(7294):115-9. PubMed ID: 20410881 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the reactivity of bis(mu-oxo)Cu(II)Cu(III) and Cu(III)Cu(III) species to methane. Shiota Y; Yoshizawa K Inorg Chem; 2009 Feb; 48(3):838-45. PubMed ID: 19113938 [TBL] [Abstract][Full Text] [Related]
12. Controlled oxidation of hydrocarbons by the membrane-bound methane monooxygenase: the case for a tricopper cluster. Chan SI; Yu SS Acc Chem Res; 2008 Aug; 41(8):969-79. PubMed ID: 18605740 [TBL] [Abstract][Full Text] [Related]
13. Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal-Organic Framework. Ikuno T; Zheng J; Vjunov A; Sanchez-Sanchez M; Ortuño MA; Pahls DR; Fulton JL; Camaioni DM; Li Z; Ray D; Mehdi BL; Browning ND; Farha OK; Hupp JT; Cramer CJ; Gagliardi L; Lercher JA J Am Chem Soc; 2017 Aug; 139(30):10294-10301. PubMed ID: 28613861 [TBL] [Abstract][Full Text] [Related]
14. Possible Peroxo State of the Dicopper Site of Particulate Methane Monooxygenase from Combined Quantum Mechanics and Molecular Mechanics Calculations. Itoyama S; Doitomi K; Kamachi T; Shiota Y; Yoshizawa K Inorg Chem; 2016 Mar; 55(6):2771-5. PubMed ID: 26918461 [TBL] [Abstract][Full Text] [Related]
15. A new copper-oxo player in methane oxidation. Himes RA; Karlin KD Proc Natl Acad Sci U S A; 2009 Nov; 106(45):18877-8. PubMed ID: 19889982 [No Abstract] [Full Text] [Related]
16. Catalytic conversion of methane to methanol using Cu-zeolites. Alayon EM; Nachtegaal M; Ranocchiari M; van Bokhoven JA Chimia (Aarau); 2012; 66(9):668-74. PubMed ID: 23211724 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Lieberman RL; Rosenzweig AC Nature; 2005 Mar; 434(7030):177-82. PubMed ID: 15674245 [TBL] [Abstract][Full Text] [Related]
18. Architecture and active site of particulate methane monooxygenase. Culpepper MA; Rosenzweig AC Crit Rev Biochem Mol Biol; 2012; 47(6):483-92. PubMed ID: 22725967 [TBL] [Abstract][Full Text] [Related]
19. Theoretical modeling of the hydroxylation of methane as mediated by the particulate methane monooxygenase. Chen PP; Chan SI J Inorg Biochem; 2006 Apr; 100(4):801-9. PubMed ID: 16494948 [TBL] [Abstract][Full Text] [Related]
20. Chemical Plausibility of Cu(III) with Biological Ligation in pMMO. Citek C; Gary JB; Wasinger EC; Stack TD J Am Chem Soc; 2015 Jun; 137(22):6991-4. PubMed ID: 26020834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]