BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 30525598)

  • 1. Toward Achieving Efficient and Accurate Ligand-Protein Unbinding with Deep Learning and Molecular Dynamics through RAVE.
    Lamim Ribeiro JM; Tiwary P
    J Chem Theory Comput; 2019 Jan; 15(1):708-719. PubMed ID: 30525598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reweighted autoencoded variational Bayes for enhanced sampling (RAVE).
    Ribeiro JML; Bravo P; Wang Y; Tiwary P
    J Chem Phys; 2018 Aug; 149(7):072301. PubMed ID: 30134694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the role of predictive time delay and biased propagator in RAVE.
    Wang Y; Tiwary P
    J Chem Phys; 2020 Apr; 152(14):144102. PubMed ID: 32295373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-dimensional spectral gap optimization of order parameters (SGOOP) through conditional probability factorization.
    Smith Z; Pramanik D; Tsai ST; Tiwary P
    J Chem Phys; 2018 Dec; 149(23):234105. PubMed ID: 30579304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A workflow for exploring ligand dissociation from a macromolecule: Efficient random acceleration molecular dynamics simulation and interaction fingerprint analysis of ligand trajectories.
    Kokh DB; Doser B; Richter S; Ormersbach F; Cheng X; Wade RC
    J Chem Phys; 2020 Sep; 153(12):125102. PubMed ID: 33003755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerating Rare Dissociative Processes in Biomolecules Using Selectively Scaled MD Simulations.
    Deb I; Frank AT
    J Chem Theory Comput; 2019 Nov; 15(11):5817-5828. PubMed ID: 31509413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of water and steric constraints in the kinetics of cavity-ligand unbinding.
    Tiwary P; Mondal J; Morrone JA; Berne BJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12015-9. PubMed ID: 26371312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variational implicit-solvent predictions of the dry-wet transition pathways for ligand-receptor binding and unbinding kinetics.
    Zhou S; Weiß RG; Cheng LT; Dzubiella J; McCammon JA; Li B
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):14989-14994. PubMed ID: 31270236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The prediction of protein-ligand unbinding for modern drug discovery.
    Zhang Q; Zhao N; Meng X; Yu F; Yao X; Liu H
    Expert Opin Drug Discov; 2022 Feb; 17(2):191-205. PubMed ID: 34731059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined Free-Energy Calculation and Machine Learning Methods for Understanding Ligand Unbinding Kinetics.
    Badaoui M; Buigues PJ; Berta D; Mandana GM; Gu H; Földes T; Dickson CJ; Hornak V; Kato M; Molteni C; Parsons S; Rosta E
    J Chem Theory Comput; 2022 Apr; 18(4):2543-2555. PubMed ID: 35195418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward Automated Sampling of Polymorph Nucleation and Free Energies with the SGOOP and Metadynamics.
    Zou Z; Tsai ST; Tiwary P
    J Phys Chem B; 2021 Dec; 125(47):13049-13056. PubMed ID: 34788047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the Potential of Mean Force and Nonequilibrium Pulling Simulations by Simultaneous Alchemical Modifications.
    Reif MM; Zacharias M
    J Chem Theory Comput; 2022 Jun; 18(6):3873-3893. PubMed ID: 35653503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid decomposition and visualisation of protein-ligand binding free energies by residue and by water.
    Woods CJ; Malaisree M; Michel J; Long B; McIntosh-Smith S; Mulholland AJ
    Faraday Discuss; 2014; 169():477-99. PubMed ID: 25340314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating Drug-Target Residence Time in Kinases through Enhanced Sampling Simulations.
    Gobbo D; Piretti V; Di Martino RMC; Tripathi SK; Giabbai B; Storici P; Demitri N; Girotto S; Decherchi S; Cavalli A
    J Chem Theory Comput; 2019 Aug; 15(8):4646-4659. PubMed ID: 31246463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Protein-Ligand Binding and Unbinding Kinetics with Biased MD Simulations and Coarse-Graining of Dynamics: Current State and Challenges.
    Wolf S
    J Chem Inf Model; 2023 May; 63(10):2902-2910. PubMed ID: 37133392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taming Rugged Free Energy Landscapes Using an Average Force.
    Fu H; Shao X; Cai W; Chipot C
    Acc Chem Res; 2019 Nov; 52(11):3254-3264. PubMed ID: 31680510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive, Open-Source, and Automated Workflow for Multisite λ-Dynamics in Lead Optimization.
    Hu R; Zhang J; Kang Y; Wang Z; Pan P; Deng Y; Hsieh CY; Hou T
    J Chem Theory Comput; 2024 Feb; 20(3):1465-1478. PubMed ID: 38300792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Past-future information bottleneck for sampling molecular reaction coordinate simultaneously with thermodynamics and kinetics.
    Wang Y; Ribeiro JML; Tiwary P
    Nat Commun; 2019 Aug; 10(1):3573. PubMed ID: 31395868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Sampling Simulations of Ligand Unbinding Kinetics Controlled by Protein Conformational Changes.
    Zhou Y; Zou R; Kuang G; Långström B; Halldin C; Ågren H; Tu Y
    J Chem Inf Model; 2019 Sep; 59(9):3910-3918. PubMed ID: 31454236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient States and Barriers from Molecular Simulations and the Milestoning Theory: Kinetics in Ligand-Protein Recognition and Compound Design.
    Tang Z; Chen SH; Chang CA
    J Chem Theory Comput; 2020 Mar; 16(3):1882-1895. PubMed ID: 32031801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.