These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 30525598)

  • 21. Computing the binding affinity of a ligand buried deep inside a protein with the hybrid steered molecular dynamics.
    Villarreal OD; Yu L; Rodriguez RA; Chen LY
    Biochem Biophys Res Commun; 2017 Jan; 483(1):203-208. PubMed ID: 28034750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A water-swap reaction coordinate for the calculation of absolute protein-ligand binding free energies.
    Woods CJ; Malaisree M; Hannongbua S; Mulholland AJ
    J Chem Phys; 2011 Feb; 134(5):054114. PubMed ID: 21303099
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Finding multiple reaction pathways of ligand unbinding.
    Rydzewski J; Valsson O
    J Chem Phys; 2019 Jun; 150(22):221101. PubMed ID: 31202231
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of Protein-Ligand Unbinding Kinetics Using Non-Equilibrium Targeted Molecular Dynamics Simulations.
    Wolf S; Amaral M; Lowinski M; Vallée F; Musil D; Güldenhaupt J; Dreyer MK; Bomke J; Frech M; Schlitter J; Gerwert K
    J Chem Inf Model; 2019 Dec; 59(12):5135-5147. PubMed ID: 31697501
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate Binding Free Energy Method from End-State MD Simulations.
    Akkus E; Tayfuroglu O; Yildiz M; Kocak A
    J Chem Inf Model; 2022 Sep; 62(17):4095-4106. PubMed ID: 35972783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Driving and characterizing nucleation of urea and glycine polymorphs in water.
    Zou Z; Beyerle ER; Tsai ST; Tiwary P
    Proc Natl Acad Sci U S A; 2023 Feb; 120(7):e2216099120. PubMed ID: 36757888
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calculation of absolute protein-ligand binding free energy using distributed replica sampling.
    Rodinger T; Howell PL; Pomès R
    J Chem Phys; 2008 Oct; 129(15):155102. PubMed ID: 19045232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toward High-Throughput Predictive Modeling of Protein Binding/Unbinding Kinetics.
    Chiu SH; Xie L
    J Chem Inf Model; 2016 Jun; 56(6):1164-74. PubMed ID: 27159844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics of Ligand-Protein Dissociation from All-Atom Simulations: Are We There Yet?
    Ribeiro JML; Tsai ST; Pramanik D; Wang Y; Tiwary P
    Biochemistry; 2019 Jan; 58(3):156-165. PubMed ID: 30547565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simple, yet powerful methodologies for conformational sampling of proteins.
    Harada R; Takano Y; Baba T; Shigeta Y
    Phys Chem Chem Phys; 2015 Mar; 17(9):6155-73. PubMed ID: 25659594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular Dynamics in Mixed Solvents Reveals Protein-Ligand Interactions, Improves Docking, and Allows Accurate Binding Free Energy Predictions.
    Arcon JP; Defelipe LA; Modenutti CP; López ED; Alvarez-Garcia D; Barril X; Turjanski AG; Martí MA
    J Chem Inf Model; 2017 Apr; 57(4):846-863. PubMed ID: 28318252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accelerating All-Atom Simulations and Gaining Mechanistic Understanding of Biophysical Systems through State Predictive Information Bottleneck.
    Mehdi S; Wang D; Pant S; Tiwary P
    J Chem Theory Comput; 2022 May; 18(5):3231-3238. PubMed ID: 35384668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Supervised Molecular Dynamics Approach to Unbiased Ligand-Protein Unbinding.
    Deganutti G; Moro S; Reynolds CA
    J Chem Inf Model; 2020 Mar; 60(3):1804-1817. PubMed ID: 32126172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accelerated Enveloping Distribution Sampling (AEDS) Allows for Efficient Sampling of Orthogonal Degrees of Freedom.
    Gracia Carmona O; Oostenbrink C
    J Chem Inf Model; 2023 Jan; 63(1):197-207. PubMed ID: 36512416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of electrostatic interactions on ligand dissociation kinetics.
    Erbaş A; de la Cruz MO; Marko JF
    Phys Rev E; 2018 Feb; 97(2-1):022405. PubMed ID: 29548245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature Accelerated Sliced Sampling to Probe Ligand Dissociation from Protein.
    Tripathi S; Nair NN
    J Chem Inf Model; 2023 Aug; 63(16):5182-5191. PubMed ID: 37540828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How maltose influences structural changes to bind to maltose-binding protein: results from umbrella sampling simulation.
    Mascarenhas NM; Kästner J
    Proteins; 2013 Feb; 81(2):185-98. PubMed ID: 22933379
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Forces and energetics of hapten-antibody dissociation: a biased molecular dynamics simulation study.
    Paci E; Caflisch A; Plückthun A; Karplus M
    J Mol Biol; 2001 Nov; 314(3):589-605. PubMed ID: 11846569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decoding the Role of Water Dynamics in Ligand-Protein Unbinding: CRF1R as a Test Case.
    Bortolato A; Deflorian F; Weiss DR; Mason JS
    J Chem Inf Model; 2015 Sep; 55(9):1857-66. PubMed ID: 26335976
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accelerating Molecular Dynamics Simulations for Drug Discovery.
    Koirala K; Joshi K; Adediwura V; Wang J; Do H; Miao Y
    Methods Mol Biol; 2024; 2714():187-202. PubMed ID: 37676600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.