These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30525598)

  • 41. Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches.
    Miyamoto S; Kollman PA
    Proteins; 1993 Jul; 16(3):226-45. PubMed ID: 8346190
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fully Flexible Docking via Reaction-Coordinate-Independent Molecular Dynamics Simulations.
    Bertazzo M; Bernetti M; Recanatini M; Masetti M; Cavalli A
    J Chem Inf Model; 2018 Feb; 58(2):490-500. PubMed ID: 29378136
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Calculation of Standard Binding Free Energies:  Aromatic Molecules in the T4 Lysozyme L99A Mutant.
    Deng Y; Roux B
    J Chem Theory Comput; 2006 Sep; 2(5):1255-73. PubMed ID: 26626834
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Application of molecular dynamics simulation in biomedicine.
    Wu X; Xu LY; Li EM; Dong G
    Chem Biol Drug Des; 2022 May; 99(5):789-800. PubMed ID: 35293126
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Steered Molecular Dynamics Simulation in Rational Drug Design.
    Do PC; Lee EH; Le L
    J Chem Inf Model; 2018 Aug; 58(8):1473-1482. PubMed ID: 29975531
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gaussian Accelerated Molecular Dynamics in NAMD.
    Pang YT; Miao Y; Wang Y; McCammon JA
    J Chem Theory Comput; 2017 Jan; 13(1):9-19. PubMed ID: 28034310
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of Molecular Interactions and Protein Rearrangement in the Dissociation Kinetics of p38α MAP Kinase Type-I/II/III Inhibitors.
    You W; Chang CA
    J Chem Inf Model; 2018 May; 58(5):968-981. PubMed ID: 29620886
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Binding Modes of Ligands Using Enhanced Sampling (BLUES): Rapid Decorrelation of Ligand Binding Modes via Nonequilibrium Candidate Monte Carlo.
    Gill SC; Lim NM; Grinaway PB; Rustenburg AS; Fass J; Ross GA; Chodera JD; Mobley DL
    J Phys Chem B; 2018 May; 122(21):5579-5598. PubMed ID: 29486559
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of protein-ligand affinity prediction using steered molecular dynamics simulations.
    Okimoto N; Suenaga A; Taiji M
    J Biomol Struct Dyn; 2017 Nov; 35(15):3221-3231. PubMed ID: 27771988
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ligand diffusion in proteins via enhanced sampling in molecular dynamics.
    Rydzewski J; Nowak W
    Phys Life Rev; 2017 Dec; 22-23():58-74. PubMed ID: 28410930
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-throughput all-atom molecular dynamics simulations using distributed computing.
    Buch I; Harvey MJ; Giorgino T; Anderson DP; De Fabritiis G
    J Chem Inf Model; 2010 Mar; 50(3):397-403. PubMed ID: 20199097
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protein-Ligand Dissociation Simulated by Parallel Cascade Selection Molecular Dynamics.
    Tran DP; Takemura K; Kuwata K; Kitao A
    J Chem Theory Comput; 2018 Jan; 14(1):404-417. PubMed ID: 29182324
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Can One Trust Kinetic and Thermodynamic Observables from Biased Metadynamics Simulations?: Detailed Quantitative Benchmarks on Millimolar Drug Fragment Dissociation.
    Pramanik D; Smith Z; Kells A; Tiwary P
    J Phys Chem B; 2019 May; 123(17):3672-3678. PubMed ID: 30974941
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Baseline Model for Predicting Protein-Ligand Unbinding Kinetics through Machine Learning.
    Amangeldiuly N; Karlov D; Fedorov MV
    J Chem Inf Model; 2020 Dec; 60(12):5946-5956. PubMed ID: 33183000
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting Small Molecule Transfer Free Energies by Combining Molecular Dynamics Simulations and Deep Learning.
    Bennett WFD; He S; Bilodeau CL; Jones D; Sun D; Kim H; Allen JE; Lightstone FC; Ingólfsson HI
    J Chem Inf Model; 2020 Nov; 60(11):5375-5381. PubMed ID: 32794768
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Frontiers in molecular dynamics simulations of DNA.
    Pérez A; Luque FJ; Orozco M
    Acc Chem Res; 2012 Feb; 45(2):196-205. PubMed ID: 21830782
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metadynamics to Enhance Sampling in Biomolecular Simulations.
    Pfaendtner J
    Methods Mol Biol; 2019; 2022():179-200. PubMed ID: 31396904
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deep learning for variational multiscale molecular modeling.
    Zhang J; Lei YK; Yang YI; Gao YQ
    J Chem Phys; 2020 Nov; 153(17):174115. PubMed ID: 33167648
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient Approximation of Ligand Rotational and Translational Entropy Changes upon Binding for Use in MM-PBSA Calculations.
    Ben-Shalom IY; Pfeiffer-Marek S; Baringhaus KH; Gohlke H
    J Chem Inf Model; 2017 Feb; 57(2):170-189. PubMed ID: 27996253
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhancing Side Chain Rotamer Sampling Using Nonequilibrium Candidate Monte Carlo.
    Burley KH; Gill SC; Lim NM; Mobley DL
    J Chem Theory Comput; 2019 Mar; 15(3):1848-1862. PubMed ID: 30677291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.