BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30525620)

  • 21. Detection of damaged DNA bases by DNA glycosylase enzymes.
    Friedman JI; Stivers JT
    Biochemistry; 2010 Jun; 49(24):4957-67. PubMed ID: 20469926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The formation of catalytically competent enzyme-substrate complex is not a bottleneck in lesion excision by human alkyladenine DNA glycosylase.
    Kuznetsov NA; Kiryutin AS; Kuznetsova AA; Panov MS; Barsukova MO; Yurkovskaya AV; Fedorova OS
    J Biomol Struct Dyn; 2017 Apr; 35(5):950-967. PubMed ID: 27025273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging.
    Buechner CN; Maiti A; Drohat AC; Tessmer I
    Nucleic Acids Res; 2015 Mar; 43(5):2716-29. PubMed ID: 25712093
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Linear free energy correlations for enzymatic base flipping: how do damaged base pairs facilitate specific recognition?
    Krosky DJ; Schwarz FP; Stivers JT
    Biochemistry; 2004 Apr; 43(14):4188-95. PubMed ID: 15065862
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA Deformation-Coupled Recognition of 8-Oxoguanine: Conformational Kinetic Gating in Human DNA Glycosylase.
    Li H; Endutkin AV; Bergonzo C; Fu L; Grollman A; Zharkov DO; Simmerling C
    J Am Chem Soc; 2017 Feb; 139(7):2682-2692. PubMed ID: 28098999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into the glycosylase search for damage from single-molecule fluorescence microscopy.
    Lee AJ; Warshaw DM; Wallace SS
    DNA Repair (Amst); 2014 Aug; 20():23-31. PubMed ID: 24560296
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A New Family of HEAT-Like Repeat Proteins Lacking a Critical Substrate Recognition Motif Present in Related DNA Glycosylases.
    Mullins EA; Shi R; Kotsch LA; Eichman BF
    PLoS One; 2015; 10(5):e0127733. PubMed ID: 25978435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermodynamic Analysis of Fast Stages of Specific Lesion Recognition by DNA Repair Enzymes.
    Kuznetsov NA; Fedorova OS
    Biochemistry (Mosc); 2016 Oct; 81(10):1136-1152. PubMed ID: 27908238
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling the chemical step utilized by human alkyladenine DNA glycosylase: a concerted mechanism AIDS in selectively excising damaged purines.
    Rutledge LR; Wetmore SD
    J Am Chem Soc; 2011 Oct; 133(40):16258-69. PubMed ID: 21877721
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The trajectory of intrahelical lesion recognition and extrusion by the human 8-oxoguanine DNA glycosylase.
    Shigdel UK; Ovchinnikov V; Lee SJ; Shih JA; Karplus M; Nam K; Verdine GL
    Nat Commun; 2020 Sep; 11(1):4437. PubMed ID: 32895378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lesion specificity in the base excision repair enzyme hNeil1: modeling and dynamics studies.
    Jia L; Shafirovich V; Geacintov NE; Broyde S
    Biochemistry; 2007 May; 46(18):5305-14. PubMed ID: 17432829
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA.
    Banerjee A; Yang W; Karplus M; Verdine GL
    Nature; 2005 Mar; 434(7033):612-8. PubMed ID: 15800616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of a DNA glycosylase searching for lesions.
    Banerjee A; Santos WL; Verdine GL
    Science; 2006 Feb; 311(5764):1153-7. PubMed ID: 16497933
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA glycosylase recognition and catalysis.
    Fromme JC; Banerjee A; Verdine GL
    Curr Opin Struct Biol; 2004 Feb; 14(1):43-9. PubMed ID: 15102448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA glycosylases search for and remove oxidized DNA bases.
    Wallace SS
    Environ Mol Mutagen; 2013 Dec; 54(9):691-704. PubMed ID: 24123395
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The origins of high-affinity enzyme binding to an extrahelical DNA base.
    Krosky DJ; Song F; Stivers JT
    Biochemistry; 2005 Apr; 44(16):5949-59. PubMed ID: 15835884
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structures of end products resulting from lesion processing by a DNA glycosylase/lyase.
    Chung SJ; Verdine GL
    Chem Biol; 2004 Dec; 11(12):1643-9. PubMed ID: 15610848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating the Substrate Selectivity of Alkyladenine DNA Glycosylase: The Synergistic Interplay of Active Site Flexibility and Water Reorganization.
    Lenz SA; Wetmore SD
    Biochemistry; 2016 Feb; 55(5):798-808. PubMed ID: 26765542
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of recognition and repair of damaged DNA by human 8-oxoguanine DNA glycosylase hOGG1.
    Kuznetsov NA; Koval VV; Fedorova OS
    Biochemistry (Mosc); 2011 Jan; 76(1):118-30. PubMed ID: 21568844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Step-by-step mechanism of DNA damage recognition by human 8-oxoguanine DNA glycosylase.
    Kuznetsova AA; Kuznetsov NA; Ishchenko AA; Saparbaev MK; Fedorova OS
    Biochim Biophys Acta; 2014 Jan; 1840(1):387-95. PubMed ID: 24096108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.