BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

575 related articles for article (PubMed ID: 30525679)

  • 1. New Assembly-Free Bulk Layered Inorganic Vertical Heterostructures with Infrared and Optical Bandgaps.
    Antoniuk ER; Cheon G; Krishnapriyan A; Rehn DA; Zhou Y; Reed EJ
    Nano Lett; 2019 Jan; 19(1):142-149. PubMed ID: 30525679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures.
    Cheon G; Duerloo KN; Sendek AD; Porter C; Chen Y; Reed EJ
    Nano Lett; 2017 Mar; 17(3):1915-1923. PubMed ID: 28191965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Band Gap Opening in Borophene/GaN and Borophene/ZnO Van der Waals Heterostructures Using Axial Deformation: First-Principles Study.
    Slepchenkov MM; Kolosov DA; Nefedov IS; Glukhova OE
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Franckeite as a naturally occurring van der Waals heterostructure.
    Molina-Mendoza AJ; Giovanelli E; Paz WS; Niño MA; Island JO; Evangeli C; Aballe L; Foerster M; van der Zant HS; Rubio-Bollinger G; Agraït N; Palacios JJ; Pérez EM; Castellanos-Gomez A
    Nat Commun; 2017 Feb; 8():14409. PubMed ID: 28194037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural, electronic and thermoelectric properties of GeC and MXO (M = Ti, Zr and X = S, Se) monolayers and their van der Waals heterostructures.
    Bashir K; Bilal M; Amin B; Chen Y; Idrees M
    RSC Adv; 2023 Mar; 13(14):9624-9635. PubMed ID: 36968037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Van der Waals Heterostructures for High-Performance Device Applications: Challenges and Opportunities.
    Liang SJ; Cheng B; Cui X; Miao F
    Adv Mater; 2020 Jul; 32(27):e1903800. PubMed ID: 31608514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Van der Waals Heterostructures by a Combined Machine Learning and Density Functional Theory Approach.
    Willhelm D; Wilson N; Arroyave R; Qian X; Cagin T; Pachter R; Qian X
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25907-25919. PubMed ID: 35622945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-Principles Study of a MoS
    Degaga GD; Kaur S; Pandey R; Jaszczak JA
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33801695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectrum of Exfoliable 1D van der Waals Molecular Wires and Their Electronic Properties.
    Zhu Y; Rehn DA; Antoniuk ER; Cheon G; Freitas R; Krishnapriyan A; Reed EJ
    ACS Nano; 2021 Jun; 15(6):9851-9859. PubMed ID: 34047183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic properties and enhanced photocatalytic performance of van der Waals heterostructures of ZnO and Janus transition metal dichalcogenides.
    Idrees M; Din HU; Rehman SU; Shafiq M; Saeed Y; Bui HD; Nguyen CV; Amin B
    Phys Chem Chem Phys; 2020 May; 22(18):10351-10359. PubMed ID: 32365147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Layer-Controlled Chemical Vapor Deposition Growth of MoS2 Vertical Heterostructures via van der Waals Epitaxy.
    Samad L; Bladow SM; Ding Q; Zhuo J; Jacobberger RM; Arnold MS; Jin S
    ACS Nano; 2016 Jul; 10(7):7039-46. PubMed ID: 27373305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct observation of interlayer hybridization and Dirac relativistic carriers in graphene/MoS₂ van der Waals heterostructures.
    Diaz HC; Avila J; Chen C; Addou R; Asensio MC; Batzill M
    Nano Lett; 2015 Feb; 15(2):1135-40. PubMed ID: 25629211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Electrical and Optoelectronic Characteristics of Few-Layer Type-II SnSe/MoS
    Yang S; Wu M; Wang B; Zhao LD; Huang L; Jiang C; Wei SH
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):42149-42155. PubMed ID: 29134796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral Heterostructures of Multilayer GeS and SnS van der Waals Crystals.
    Sutter E; Wang J; Sutter P
    ACS Nano; 2020 Sep; 14(9):12248-12255. PubMed ID: 32886477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study.
    You B; Wang X; Zheng Z; Mi W
    Phys Chem Chem Phys; 2016 Mar; 18(10):7381-8. PubMed ID: 26899350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal conductivity of van der Waals heterostructure of 2D GeS and SnS based on machine learning interatomic potential.
    Li W; Yang C
    J Phys Condens Matter; 2023 Sep; 35(50):. PubMed ID: 37669661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct band gap and strong Rashba effect in van der Waals heterostructures of InSe and Sb single layers.
    Fang D; Chen S; Li Y; Monserrat B
    J Phys Condens Matter; 2021 Feb; 33(15):. PubMed ID: 33418556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Band alignment and optical features in Janus-MoSeTe/X(OH)
    Vo DD; Vu TV; Hieu NV; Hieu NN; Phuc HV; Binh NTT; Phuong LTT; Idrees M; Amin B; Nguyen CV
    Phys Chem Chem Phys; 2019 Nov; 21(46):25849-25858. PubMed ID: 31735947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoresponse of Natural van der Waals Heterostructures.
    Ray K; Yore AE; Mou T; Jha S; Smithe KKH; Wang B; Pop E; Newaz AKM
    ACS Nano; 2017 Jun; 11(6):6024-6030. PubMed ID: 28485958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DFT investigation of the electronic and optical properties of hexagonal MX
    Sibhatu AK; Teshome T; Akin-Ojo O; Yimam A; Asres GA
    RSC Adv; 2022 Oct; 12(47):30838-30845. PubMed ID: 36349161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.