These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30525680)

  • 1. Strengthening Mechanism of a Single Precipitate in a Metallic Nanocube.
    Kiani MT; Wang Y; Bertin N; Cai W; Gu XW
    Nano Lett; 2019 Jan; 19(1):255-260. PubMed ID: 30525680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-situ STEM imaging of growth and phase change of individual CuAl
    Liu C; Malladi SK; Xu Q; Chen J; Tichelaar FD; Zhuge X; Zandbergen HW
    Sci Rep; 2017 May; 7(1):2184. PubMed ID: 28526840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale precipitates as sustainable dislocation sources for enhanced ductility and high strength.
    Peng S; Wei Y; Gao H
    Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5204-5209. PubMed ID: 32094194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strengthening in Metal/Graphene Composites: Capturing the Transition from Interface to Precipitate Hardening.
    Shuang F; Dai Z; Aifantis KE
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26610-26620. PubMed ID: 34038072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain hardening recovery mediated by coherent precipitates in lightweight steel.
    Kim SD; Park SJ; Jang JH; Moon J; Ha HY; Lee CH; Park H; Shin JH; Lee TH
    Sci Rep; 2021 Jul; 11(1):14468. PubMed ID: 34262073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. When More Is Less: Plastic Weakening of Single Crystalline Ag Nanoparticles by the Polycrystalline Au Shell.
    Sharma A; Amodeo J; Gazit N; Qi Y; Thomas O; Rabkin E
    ACS Nano; 2021 Sep; 15(9):14061-14070. PubMed ID: 34379398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation.
    Jiang S; Wang H; Wu Y; Liu X; Chen H; Yao M; Gault B; Ponge D; Raabe D; Hirata A; Chen M; Wang Y; Lu Z
    Nature; 2017 Apr; 544(7651):460-464. PubMed ID: 28397822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraordinary Strain Hardening from Dislocation Loops in Defect-Free Al Nanocubes.
    Kiani MT; Aitken ZH; Parakh A; Zhang YW; Gu XW
    Nano Lett; 2022 May; 22(10):4036-4041. PubMed ID: 35559613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation Dependent Hardening by <001> Rod-Shaped Misfitting Precipitates in Aluminium Alloys.
    Liu J; Muraishi S
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hardening in Au-Ag nanoboxes from stacking fault-dislocation interactions.
    Patil RP; Doan D; Aitken ZH; Chen S; Kiani MT; Barr CM; Hattar K; Zhang YW; Gu XW
    Nat Commun; 2020 Jun; 11(1):2923. PubMed ID: 32522992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Doubled strength and ductility via maraging effect and dynamic precipitate transformation in ultrastrong medium-entropy alloy.
    Chung H; Choi WS; Jun H; Do HS; Lee BJ; Choi PP; Han HN; Ko WS; Sohn SS
    Nat Commun; 2023 Jan; 14(1):145. PubMed ID: 36627295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strength-ductility materials by engineering a coherent interface at incoherent precipitates.
    Mao D; Xie Y; Meng X; Ma X; Zhang Z; Sun X; Wan L; Volodymyr K; Huang Y
    Mater Horiz; 2024 Jul; 11(14):3408-3419. PubMed ID: 38691105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rebuilding the Strain Hardening at a Large Strain in Twinned Au Nanowires.
    Sun J; Han J; Yang Z; Liu H; Song D; Ma A; Fang L
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30340344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harnessing instability for work hardening in multi-principal element alloys.
    Xu B; Duan H; Chen X; Wang J; Ma Y; Jiang P; Yuan F; Wang Y; Ren Y; Du K; Wei Y; Wu X
    Nat Mater; 2024 Jun; 23(6):755-761. PubMed ID: 38605195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of ordered L1
    Gwalani B; Gangireddy S; Zheng Y; Soni V; Mishra RS; Banerjee R
    Sci Rep; 2019 Apr; 9(1):6371. PubMed ID: 31015578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Studies on the mechanical properties of dental Ag-Pd-Au-Cu alloys. (Part 1) Effects of age-hardening treatment on the tensile behaviour of alloys (author's transl)].
    Asaoka K; Tsuji K; Kuwayama N
    Shika Rikogaku Zasshi; 1981 Oct; 22(60):271-6. PubMed ID: 6949994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deformation Mechanisms and Remarkable Strain Hardening in Single-Crystalline High-Entropy-Alloy Micropillars/Nanopillars.
    Zhang Q; Huang R; Zhang X; Cao T; Xue Y; Li X
    Nano Lett; 2021 Apr; 21(8):3671-3679. PubMed ID: 33756077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-temperature in-situ TEM straining of the interaction with dislocations and particles for Cu-added ferritic stainless steel.
    Kobayashi S; Kaneko K; Yamada K; Kikuchi M; Kanno N; Hamada J
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i28-i29. PubMed ID: 25359827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain Hardening and Size Effect in Five-fold Twinned Ag Nanowires.
    Narayanan S; Cheng G; Zeng Z; Zhu Y; Zhu T
    Nano Lett; 2015 Jun; 15(6):4037-44. PubMed ID: 25965858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of β' and β precipitates to hardening in as-solutionized Ag-20Pd-12Au-14.5Cu alloys for dental prosthesis applications.
    Kim Y; Niinomi M; Hieda J; Nakai M; Cho K; Fukui H
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():204-9. PubMed ID: 24582241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.