These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30525735)

  • 1. Fast semistochastic heat-bath configuration interaction.
    Li J; Otten M; Holmes AA; Sharma S; Umrigar CJ
    J Chem Phys; 2018 Dec; 149(21):214110. PubMed ID: 30525735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semistochastic Heat-Bath Configuration Interaction Method: Selected Configuration Interaction with Semistochastic Perturbation Theory.
    Sharma S; Holmes AA; Jeanmairet G; Alavi A; Umrigar CJ
    J Chem Theory Comput; 2017 Apr; 13(4):1595-1604. PubMed ID: 28263594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Almost exact energies for the Gaussian-2 set with the semistochastic heat-bath configuration interaction method.
    Yao Y; Giner E; Li J; Toulouse J; Umrigar CJ
    J Chem Phys; 2020 Sep; 153(12):124117. PubMed ID: 33003731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat-Bath Configuration Interaction: An Efficient Selected Configuration Interaction Algorithm Inspired by Heat-Bath Sampling.
    Holmes AA; Tubman NM; Umrigar CJ
    J Chem Theory Comput; 2016 Aug; 12(8):3674-80. PubMed ID: 27428771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relativistic Semistochastic Heat-Bath Configuration Interaction.
    Wang X; Sharma S
    J Chem Theory Comput; 2023 Feb; 19(3):848-855. PubMed ID: 36700783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excited States of Methylene, Polyenes, and Ozone from Heat-Bath Configuration Interaction.
    Chien AD; Holmes AA; Otten M; Umrigar CJ; Sharma S; Zimmerman PM
    J Phys Chem A; 2018 Mar; 122(10):2714-2722. PubMed ID: 29473750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Heat-Bath Sampling in Fock Space.
    Holmes AA; Changlani HJ; Umrigar CJ
    J Chem Theory Comput; 2016 Apr; 12(4):1561-71. PubMed ID: 26959242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excited states using semistochastic heat-bath configuration interaction.
    Holmes AA; Umrigar CJ; Sharma S
    J Chem Phys; 2017 Oct; 147(16):164111. PubMed ID: 29096501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in Parallel Heat Bath Configuration Interaction.
    Dang DK; Kammeraad JA; Zimmerman PM
    J Phys Chem A; 2023 Jan; 127(1):400-411. PubMed ID: 36580361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate energies of transition metal atoms, ions, and monoxides using selected configuration interaction and density-based basis-set corrections.
    Yao Y; Giner E; Anderson TA; Toulouse J; Umrigar CJ
    J Chem Phys; 2021 Nov; 155(20):204104. PubMed ID: 34852493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale parallel configuration interaction. II. Two- and four-component double-group general active space implementation with application to BiH.
    Knecht S; Jensen HJ; Fleig T
    J Chem Phys; 2010 Jan; 132(1):014108. PubMed ID: 20078150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordinate Descent Full Configuration Interaction.
    Wang Z; Li Y; Lu J
    J Chem Theory Comput; 2019 Jun; 15(6):3558-3569. PubMed ID: 31042383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational heat-bath configuration interaction with semistochastic perturbation theory using harmonic oscillator or VSCF modals.
    Tran HK; Berkelbach TC
    J Chem Phys; 2023 Nov; 159(19):. PubMed ID: 37965997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicomponent heat-bath configuration interaction with the perturbative correction for the calculation of protonic excited states.
    Alaal N; Brorsen KR
    J Chem Phys; 2021 Dec; 155(23):234107. PubMed ID: 34937361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A configuration-based heatbath-CI for spin-adapted multireference electronic structure calculations with large active spaces.
    Ugandi M; Roemelt M
    J Comput Chem; 2023 Dec; 44(31):2374-2390. PubMed ID: 37589287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin-flip non-orthogonal configuration interaction: a variational and almost black-box method for describing strongly correlated molecules.
    Mayhall NJ; Horn PR; Sundstrom EJ; Head-Gordon M
    Phys Chem Chem Phys; 2014 Nov; 16(41):22694-705. PubMed ID: 25233435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pushing configuration-interaction to the limit: Towards massively parallel MCSCF calculations.
    Vogiatzis KD; Ma D; Olsen J; Gagliardi L; de Jong WA
    J Chem Phys; 2017 Nov; 147(18):184111. PubMed ID: 29141437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-Step Treatment of Spin-Orbit Coupling and Electron Correlation in Large Active Spaces.
    Mussard B; Sharma S
    J Chem Theory Comput; 2018 Jan; 14(1):154-165. PubMed ID: 29202220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel methods for configuration interaction and orbital optimization for wave functions containing non-orthogonal orbitals with applications to the chromium dimer and trimer.
    Olsen J
    J Chem Phys; 2015 Sep; 143(11):114102. PubMed ID: 26395682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.
    Nakatsuji H
    Acc Chem Res; 2012 Sep; 45(9):1480-90. PubMed ID: 22686372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.