These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 30526130)

  • 21. Improving printability of hydrogel-based bio-inks for thermal inkjet bioprinting applications
    Suntornnond R; Ng WL; Huang X; Yeow CHE; Yeong WY
    J Mater Chem B; 2022 Aug; 10(31):5989-6000. PubMed ID: 35876487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage.
    Daly AC; Critchley SE; Rencsok EM; Kelly DJ
    Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation.
    Kesti M; Müller M; Becher J; Schnabelrauch M; D'Este M; Eglin D; Zenobi-Wong M
    Acta Biomater; 2015 Jan; 11():162-72. PubMed ID: 25260606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of sterilisation methods for bio-ink components: gelatin, gelatin methacryloyl, hyaluronic acid and hyaluronic acid methacryloyl.
    O'Connell CD; Onofrillo C; Duchi S; Li X; Zhang Y; Tian P; Lu L; Trengove A; Quigley A; Gambhir S; Khansari A; Mladenovska T; O'Connor A; Di Bella C; Choong PF; Wallace GG
    Biofabrication; 2019 Apr; 11(3):035003. PubMed ID: 30818298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA.
    Gao G; Schilling AF; Hubbell K; Yonezawa T; Truong D; Hong Y; Dai G; Cui X
    Biotechnol Lett; 2015 Nov; 37(11):2349-55. PubMed ID: 26198849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioprinted Scaffolds for Cartilage Tissue Engineering.
    Kang HW; Yoo JJ; Atala A
    Methods Mol Biol; 2015; 1340():161-9. PubMed ID: 26445837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D Bioprinting Using Cross-Linker-Free Silk-Gelatin Bioink for Cartilage Tissue Engineering.
    Singh YP; Bandyopadhyay A; Mandal BB
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33684-33696. PubMed ID: 31453678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The current state of the art in gellan-based printing inks in tissue engineering.
    Cernencu AI; Ioniță M
    Carbohydr Polym; 2023 Jun; 309():120676. PubMed ID: 36906360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scaffold-free bioprinted osteogenic and chondrogenic systems to model osteochondral physiology.
    Breathwaite EK; Weaver JR; Murchison AC; Treadwell ML; Odanga JJ; Lee JB
    Biomed Mater; 2019 Oct; 14(6):065010. PubMed ID: 31491773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head.
    Idaszek J; Costantini M; Karlsen TA; Jaroszewicz J; Colosi C; Testa S; Fornetti E; Bernardini S; Seta M; Kasarełło K; Wrzesień R; Cannata S; Barbetta A; Gargioli C; Brinchman JE; Święszkowski W
    Biofabrication; 2019 Jul; 11(4):044101. PubMed ID: 31151123
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Swelling-Dependent Shape-Based Transformation of a Human Mesenchymal Stromal Cells-Laden 4D Bioprinted Construct for Cartilage Tissue Engineering.
    Díaz-Payno PJ; Kalogeropoulou M; Muntz I; Kingma E; Kops N; D'Este M; Koenderink GH; Fratila-Apachitei LE; van Osch GJVM; Zadpoor AA
    Adv Healthc Mater; 2023 Jan; 12(2):e2201891. PubMed ID: 36308047
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hybrid Bioprinting of Chondrogenically Induced Human Mesenchymal Stem Cell Spheroids.
    De Moor L; Fernandez S; Vercruysse C; Tytgat L; Asadian M; De Geyter N; Van Vlierberghe S; Dubruel P; Declercq H
    Front Bioeng Biotechnol; 2020; 8():484. PubMed ID: 32523941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of gelatin source and photoinitiator type on chondrocyte redifferentiation in gelatin methacryloyl-based tissue-engineered cartilage constructs.
    Pahoff S; Meinert C; Bas O; Nguyen L; Klein TJ; Hutmacher DW
    J Mater Chem B; 2019 Mar; 7(10):1761-1772. PubMed ID: 32254918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D bioprinting via an in situ crosslinking technique towards engineering cartilage tissue.
    Galarraga JH; Kwon MY; Burdick JA
    Sci Rep; 2019 Dec; 9(1):19987. PubMed ID: 31882612
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced nutrient transport improves the depth-dependent properties of tri-layered engineered cartilage constructs with zonal co-culture of chondrocytes and MSCs.
    Kim M; Farrell MJ; Steinberg DR; Burdick JA; Mauck RL
    Acta Biomater; 2017 Aug; 58():1-11. PubMed ID: 28629894
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity.
    Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Injectable gellan gum hydrogels with autologous cells for the treatment of rabbit articular cartilage defects.
    Oliveira JT; Gardel LS; Rada T; Martins L; Gomes ME; Reis RL
    J Orthop Res; 2010 Sep; 28(9):1193-9. PubMed ID: 20187118
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ formation of osteochondral interfaces through "bone-ink" printing in tailored microgel suspensions.
    Jalandhra GK; Molley TG; Hung TT; Roohani I; Kilian KA
    Acta Biomater; 2023 Jan; 156():75-87. PubMed ID: 36055612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One-Step Photoactivation of a Dual-Functionalized Bioink as Cell Carrier and Cartilage-Binding Glue for Chondral Regeneration.
    Lim KS; Abinzano F; Bernal PN; Albillos Sanchez A; Atienza-Roca P; Otto IA; Peiffer QC; Matsusaki M; Woodfield TBF; Malda J; Levato R
    Adv Healthc Mater; 2020 Aug; 9(15):e1901792. PubMed ID: 32324342
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Progenitor Cells in Healthy and Osteoarthritic Human Cartilage Have Extensive Culture Expansion Capacity while Retaining Chondrogenic Properties.
    Rikkers M; Korpershoek JV; Levato R; Malda J; Vonk LA
    Cartilage; 2021 Dec; 13(2_suppl):129S-142S. PubMed ID: 34802263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.