BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30526274)

  • 1. Characterization of inhibitory failure in Multiple Sclerosis: Evidence of impaired conflict resolution.
    Ternes AM; Clough M; Foletta P; White O; Fielding J
    J Clin Exp Neuropsychol; 2019 Apr; 41(3):320-329. PubMed ID: 30526274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Executive control deficits correlate with reduced frontal white matter volume in multiple sclerosis.
    Ternes AM; Clough M; Foletta P; White O; Fielding J
    J Clin Exp Neuropsychol; 2019 Sep; 41(7):723-729. PubMed ID: 31106663
    [No Abstract]   [Full Text] [Related]  

  • 3. Cognitive processing speed deficits in multiple sclerosis: Dissociating sensorial and motor processing changes from cognitive processing speed.
    Clough M; Dobbing J; Stankovich J; Ternes A; Kolbe S; White OB; Fielding J
    Mult Scler Relat Disord; 2020 Feb; 38():101522. PubMed ID: 31785491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory mechanisms involved in Stroop-matching and stop-signal tasks and the role of impulsivity.
    Portugal ACA; Afonso AS; Caldas AL; Maturana W; Mocaiber I; Machado-Pinheiro W
    Acta Psychol (Amst); 2018 Nov; 191():234-243. PubMed ID: 30343096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson's disease.
    Obeso I; Wilkinson L; Casabona E; Bringas ML; Álvarez M; Álvarez L; Pavón N; Rodríguez-Oroz MC; Macías R; Obeso JA; Jahanshahi M
    Exp Brain Res; 2011 Jul; 212(3):371-84. PubMed ID: 21643718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response inhibition and interference control: Effects of schizophrenia, genetic risk, and schizotypy.
    Ettinger U; Aichert DS; Wöstmann N; Dehning S; Riedel M; Kumari V
    J Neuropsychol; 2018 Sep; 12(3):484-510. PubMed ID: 28485076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abnormalities of the executive control network in multiple sclerosis phenotypes: An fMRI effective connectivity study.
    Dobryakova E; Rocca MA; Valsasina P; Ghezzi A; Colombo B; Martinelli V; Comi G; DeLuca J; Filippi M
    Hum Brain Mapp; 2016 Jun; 37(6):2293-304. PubMed ID: 26956182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saccade deficits in amnestic mild cognitive impairment resemble mild Alzheimer's disease.
    Peltsch A; Hemraj A; Garcia A; Munoz DP
    Eur J Neurosci; 2014 Jun; 39(11):2000-13. PubMed ID: 24890471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pro- and antisaccade task-switching: response suppression-and not vector inversion-contributes to a task-set inertia.
    Tari B; Heath M
    Exp Brain Res; 2019 Dec; 237(12):3475-3484. PubMed ID: 31741001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cognitive impairment differs between primary progressive and relapsing-remitting MS.
    Ruet A; Deloire M; Charré-Morin J; Hamel D; Brochet B
    Neurology; 2013 Apr; 80(16):1501-8. PubMed ID: 23516324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antisaccade performance in patients with multiple sclerosis.
    Fielding J; Kilpatrick T; Millist L; White O
    Cortex; 2009; 45(7):900-3. PubMed ID: 19327763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociated Components of Executive Control in Acute Hypobaric Hypoxia.
    Takács E; Czigler I; Pató LG; Balázs L
    Aerosp Med Hum Perform; 2017 Dec; 88(12):1081-1087. PubMed ID: 29157336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential patterns of memory performance in relapsing, remitting and secondary progressive multiple sclerosis.
    Drake MA; Carrá A; Allegri RF; Luetic G
    Neurol India; 2006 Dec; 54(4):370-6. PubMed ID: 17114845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between Stroop and stop-signal measures of inhibition in adolescents: influences from variations in context and measure estimation.
    Khng KH; Lee K
    PLoS One; 2014; 9(7):e101356. PubMed ID: 24992683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cognitive mechanisms of inhibitory control deficits in autism spectrum disorder.
    Schmitt LM; White SP; Cook EH; Sweeney JA; Mosconi MW
    J Child Psychol Psychiatry; 2018 May; 59(5):586-595. PubMed ID: 29052841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emotional Stop Cues Facilitate Inhibitory Control in Schizophrenia.
    Zheng Q; Yang TX; Ye Z
    J Int Neuropsychol Soc; 2020 Mar; 26(3):286-293. PubMed ID: 31694734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential conflict resolution under multiple concurrent conflicts: An ERP study.
    Rey-Mermet A; Gade M; Steinhauser M
    Neuroimage; 2019 Mar; 188():411-418. PubMed ID: 30562575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independent component analysis of functional networks for response inhibition: Inter-subject variation in stop signal reaction time.
    Zhang S; Tsai SJ; Hu S; Xu J; Chao HH; Calhoun VD; Li CS
    Hum Brain Mapp; 2015 Sep; 36(9):3289-302. PubMed ID: 26089095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Action Control Deficits in Patients With Essential Tremor.
    Hughes S; Claassen DO; van den Wildenberg WPM; Phibbs FT; Bradley EB; Wylie SA; van Wouwe NC
    J Int Neuropsychol Soc; 2019 Feb; 25(2):156-164. PubMed ID: 30501660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are core component processes of executive function dissociable within the frontal lobes? Evidence from humans with focal prefrontal damage.
    Tsuchida A; Fellows LK
    Cortex; 2013; 49(7):1790-800. PubMed ID: 23206529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.