These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 30526333)

  • 1. Activation of Innate Immune Responses by a CpG Oligonucleotide Sequence Composed Entirely of Threose Nucleic Acid.
    Lange MJ; Burke DH; Chaput JC
    Nucleic Acid Ther; 2019 Feb; 29(1):51-59. PubMed ID: 30526333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and polymerase recognition of a pyrrolocytidine TNA triphosphate.
    Mei H; Wang Y; Yik EJ; Chaput JC
    Biopolymers; 2021 Jan; 112(1):e23388. PubMed ID: 32615644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the Horizon of the Xeno Nucleic Acid Space: Threose Nucleic Acids with Increased Information Storage.
    Depmeier H; Kath-Schorr S
    J Am Chem Soc; 2024 Mar; 146(11):7743-7751. PubMed ID: 38442021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic Synthesis of TNA Protects DNA Nanostructures.
    Qin B; Wang Q; Wang Y; Han F; Wang H; Jiang S; Yu H
    Angew Chem Int Ed Engl; 2024 Mar; 63(13):e202317334. PubMed ID: 38323479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatility of threose nucleic acids: synthesis, properties, and applications in chemical biology and biomedical advancements.
    Tam DY; Li P; Liu LS; Wang F; Leung HM; Lo PK
    Chem Commun (Camb); 2024 Oct; 60(83):11864-11889. PubMed ID: 39318271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of a Fluorescent Cytidine TNA Triphosphate Analogue.
    Mei H; Chaput J
    Methods Mol Biol; 2019; 1973():27-37. PubMed ID: 31016694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redesigning the Genetic Polymers of Life.
    Chaput JC
    Acc Chem Res; 2021 Feb; 54(4):1056-1065. PubMed ID: 33533593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vitro Selection of an ATP-Binding TNA Aptamer.
    Zhang L; Chaput JC
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32933142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse Transcription of Threose Nucleic Acid by a Naturally Occurring DNA Polymerase.
    Dunn MR; Chaput JC
    Chembiochem; 2016 Oct; 17(19):1804-1808. PubMed ID: 27383648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and polymerase activity of a fluorescent cytidine TNA triphosphate analogue.
    Mei H; Shi C; Jimenez RM; Wang Y; Kardouh M; Chaput JC
    Nucleic Acids Res; 2017 Jun; 45(10):5629-5638. PubMed ID: 28472363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA polymerase-mediated synthesis of unbiased threose nucleic acid (TNA) polymers requires 7-deazaguanine to suppress G:G mispairing during TNA transcription.
    Dunn MR; Larsen AC; Zahurancik WJ; Fahmi NE; Meyers M; Suo Z; Chaput JC
    J Am Chem Soc; 2015 Apr; 137(12):4014-7. PubMed ID: 25785966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of Functionally Enhanced α-l-Threofuranosyl Nucleic Acid Aptamers.
    McCloskey CM; Li Q; Yik EJ; Chim N; Ngor AK; Medina E; Grubisic I; Co Ting Keh L; Poplin R; Chaput JC
    ACS Synth Biol; 2021 Nov; 10(11):3190-3199. PubMed ID: 34739228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evidence that GNA and TNA were not sequential polymers in the prebiotic evolution of RNA.
    Yang YW; Zhang S; McCullum EO; Chaput JC
    J Mol Evol; 2007 Sep; 65(3):289-95. PubMed ID: 17828568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A parallel stranded G-quadruplex composed of threose nucleic acid (TNA).
    Liao JY; Anosova I; Bala S; Van Horn WD; Chaput JC
    Biopolymers; 2017 Mar; 107(3):. PubMed ID: 27718227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An In Vitro Selection Protocol for Threose Nucleic Acid (TNA) Using DNA Display.
    Dunn MR; Chaput JC
    Curr Protoc Nucleic Acid Chem; 2014 Jun; 57():9.8.1-19. PubMed ID: 24961723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. α-l-Threose Nucleic Acids as Biocompatible Antisense Oligonucleotides for Suppressing Gene Expression in Living Cells.
    Liu LS; Leung HM; Tam DY; Lo TW; Wong SW; Lo PK
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9736-9743. PubMed ID: 29473733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligase-Mediated Threose Nucleic Acid Synthesis on DNA Templates.
    McCloskey CM; Liao JY; Bala S; Chaput JC
    ACS Synth Biol; 2019 Feb; 8(2):282-286. PubMed ID: 30629885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering TNA polymerases through iterative cycles of directed evolution.
    Yik EJ; Maola VA; Chaput JC
    Methods Enzymol; 2023; 691():29-59. PubMed ID: 37914450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermostability Trends of TNA:DNA Duplexes Reveal Strong Purine Dependence.
    Lackey HH; Peterson EM; Chen Z; Harris JM; Heemstra JM
    ACS Synth Biol; 2019 May; 8(5):1144-1152. PubMed ID: 30964657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Insights into Conformation Differences between DNA/TNA and RNA/TNA Chimeric Duplexes.
    Anosova I; Kowal EA; Sisco NJ; Sau S; Liao JY; Bala S; Rozners E; Egli M; Chaput JC; Van Horn WD
    Chembiochem; 2016 Sep; 17(18):1705-8. PubMed ID: 27347671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.