These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 30526358)

  • 21. Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors.
    Park YW; Choi YS; Ahn SS; Chang JH; Kim SH; Lee SK
    Korean J Radiol; 2019 Sep; 20(9):1381-1389. PubMed ID: 31464116
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MRI radiomics-based machine-learning classification of bone chondrosarcoma.
    Gitto S; Cuocolo R; Albano D; Chianca V; Messina C; Gambino A; Ugga L; Cortese MC; Lazzara A; Ricci D; Spairani R; Zanchetta E; Luzzati A; Brunetti A; Parafioriti A; Sconfienza LM
    Eur J Radiol; 2020 Jul; 128():109043. PubMed ID: 32438261
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of Thick-Slab Overlapping MIP Images of Contrast-Enhanced 3D T1-Weighted CUBE for Detection of Intracranial Metastases: A Pilot Study for Comparison of Lesion Detection, Interpretation Time, and Sensitivity with Nonoverlapping CUBE MIP, CUBE, and Inversion-Recovery-Prepared Fast-Spoiled Gradient Recalled Brain Volume.
    Yoon BC; Saad AF; Rezaii P; Wintermark M; Zaharchuk G; Iv M
    AJNR Am J Neuroradiol; 2018 Sep; 39(9):1635-1642. PubMed ID: 30093483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer.
    Gu Q; Feng Z; Liang Q; Li M; Deng J; Ma M; Wang W; Liu J; Liu P; Rong P
    Eur J Radiol; 2019 Sep; 118():32-37. PubMed ID: 31439255
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of survival with multi-scale radiomic analysis in glioblastoma patients.
    Chaddad A; Sabri S; Niazi T; Abdulkarim B
    Med Biol Eng Comput; 2018 Dec; 56(12):2287-2300. PubMed ID: 29915951
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy.
    Horvat N; Veeraraghavan H; Khan M; Blazic I; Zheng J; Capanu M; Sala E; Garcia-Aguilar J; Gollub MJ; Petkovska I
    Radiology; 2018 Jun; 287(3):833-843. PubMed ID: 29514017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A machine learning model to precisely immunohistochemically classify pituitary adenoma subtypes with radiomics based on preoperative magnetic resonance imaging.
    Peng A; Dai H; Duan H; Chen Y; Huang J; Zhou L; Chen L
    Eur J Radiol; 2020 Apr; 125():108892. PubMed ID: 32087466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine Learning-based Texture Analysis of Contrast-enhanced MR Imaging to Differentiate between Glioblastoma and Primary Central Nervous System Lymphoma.
    Kunimatsu A; Kunimatsu N; Yasaka K; Akai H; Kamiya K; Watadani T; Mori H; Abe O
    Magn Reson Med Sci; 2019 Jan; 18(1):44-52. PubMed ID: 29769456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machine Learning-based Analysis of Rectal Cancer MRI Radiomics for Prediction of Metachronous Liver Metastasis.
    Liang M; Cai Z; Zhang H; Huang C; Meng Y; Zhao L; Li D; Ma X; Zhao X
    Acad Radiol; 2019 Nov; 26(11):1495-1504. PubMed ID: 30711405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clinical Applications of Quantitative 3-Dimensional MRI Analysis for Pediatric Embryonal Brain Tumors.
    Hara JH; Wu A; Villanueva-Meyer JE; Valdes G; Daggubati V; Mueller S; Solberg TD; Braunstein SE; Morin O; Raleigh DR
    Int J Radiat Oncol Biol Phys; 2018 Nov; 102(4):744-756. PubMed ID: 30108003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Radiomics-based machine learning methods for isocitrate dehydrogenase genotype prediction of diffuse gliomas.
    Wu S; Meng J; Yu Q; Li P; Fu S
    J Cancer Res Clin Oncol; 2019 Mar; 145(3):543-550. PubMed ID: 30719536
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radiomic-Based MRI for Classification of Solitary Brain Metastases Subtypes From Primary Lymphoma of the Central Nervous System.
    Zhao LM; Hu R; Xie FF; Clay Kargilis D; Imami M; Yang S; Guo JQ; Jiao X; Chen RT; Wei-Hua L; Li L
    J Magn Reson Imaging; 2023 Jan; 57(1):227-235. PubMed ID: 35652509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Prediction.
    Bae S; Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK
    Radiology; 2018 Dec; 289(3):797-806. PubMed ID: 30277442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Radiomics-Based Pretherapeutic Prediction of Non-response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer.
    Zhou X; Yi Y; Liu Z; Cao W; Lai B; Sun K; Li L; Zhou Z; Feng Y; Tian J
    Ann Surg Oncol; 2019 Jun; 26(6):1676-1684. PubMed ID: 30887373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Independent validation of machine learning in diagnosing breast Cancer on magnetic resonance imaging within a single institution.
    Ji Y; Li H; Edwards AV; Papaioannou J; Ma W; Liu P; Giger ML
    Cancer Imaging; 2019 Sep; 19(1):64. PubMed ID: 31533838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Radiomic prediction of mutation status based on MR imaging of lung cancer brain metastases.
    Chen BT; Jin T; Ye N; Mambetsariev I; Daniel E; Wang T; Wong CW; Rockne RC; Colen R; Holodny AI; Sampath S; Salgia R
    Magn Reson Imaging; 2020 Jun; 69():49-56. PubMed ID: 32179095
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI.
    Cuocolo R; Ugga L; Solari D; Corvino S; D'Amico A; Russo D; Cappabianca P; Cavallo LM; Elefante A
    Neuroradiology; 2020 Dec; 62(12):1649-1656. PubMed ID: 32705290
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer.
    Abdollahi H; Mofid B; Shiri I; Razzaghdoust A; Saadipoor A; Mahdavi A; Galandooz HM; Mahdavi SR
    Radiol Med; 2019 Jun; 124(6):555-567. PubMed ID: 30607868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Squamous Cell Carcinoma and Lymphoma of the Oropharynx: Differentiation Using a Radiomics Approach.
    Bae S; Choi YS; Sohn B; Ahn SS; Lee SK; Yang J; Kim J
    Yonsei Med J; 2020 Oct; 61(10):895-900. PubMed ID: 32975065
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radiomic Profiling of Glioblastoma: Identifying an Imaging Predictor of Patient Survival with Improved Performance over Established Clinical and Radiologic Risk Models.
    Kickingereder P; Burth S; Wick A; Götz M; Eidel O; Schlemmer HP; Maier-Hein KH; Wick W; Bendszus M; Radbruch A; Bonekamp D
    Radiology; 2016 Sep; 280(3):880-9. PubMed ID: 27326665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.