BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

858 related articles for article (PubMed ID: 30526481)

  • 21. Full-Length Transcriptome Survey and Expression Analysis of
    Deng Y; Zheng H; Yan Z; Liao D; Li C; Zhou J; Liao H
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30134624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptome assembly, gene annotation and tissue gene expression atlas of the rainbow trout.
    Salem M; Paneru B; Al-Tobasei R; Abdouni F; Thorgaard GH; Rexroad CE; Yao J
    PLoS One; 2015; 10(3):e0121778. PubMed ID: 25793877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. De novo transcriptome analysis of Lantana camara L. revealed candidate genes involved in phenylpropanoid biosynthesis pathway.
    Shah M; Alharby HF; Hakeem KR; Ali N; Rahman IU; Munawar M; Anwar Y
    Sci Rep; 2020 Aug; 10(1):13726. PubMed ID: 32792567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic and Phytochemical Analysis to Evaluate the Diversity and Relationships of Mate (Ilex paraguariensis A.St.-Hil.) Elite Genetic Resources in a Germplasm Collection.
    Friedrich JC; Gonela A; Gonçalves Vidigal MC; Vidigal Filho PS; Sturion JA; Cardozo Junior EL
    Chem Biodivers; 2017 Mar; 14(3):. PubMed ID: 27701846
    [TBL] [Abstract][Full Text] [Related]  

  • 25. De novo assembly of wheat root transcriptomes and transcriptional signature of longitudinal differentiation.
    Challa GS; Li W
    PLoS One; 2018; 13(11):e0205582. PubMed ID: 30395610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.
    Hoang NV; Furtado A; Mason PJ; Marquardt A; Kasirajan L; Thirugnanasambandam PP; Botha FC; Henry RJ
    BMC Genomics; 2017 May; 18(1):395. PubMed ID: 28532419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NMR-based approach reveals seasonal metabolic changes in mate (Ilex paraguariensis A. St.-Hil.).
    Freitas DDS; Nunes WDS; do Prado Apparecido R; Lopes TIB; Alcantara GB
    Magn Reson Chem; 2018 May; 56(5):311-320. PubMed ID: 29315783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. De Novo Transcriptome Assembly and Annotation of the Leaves and Callus of Cyclocarya Paliurus (Bata1) Iljinskaja.
    Xu X; Yin Z; Chen J; Wang X; Peng D; Shangguan X
    PLoS One; 2016; 11(8):e0160279. PubMed ID: 27483006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The complete genome of a putative endornavirus identified in yerba mate (Ilex paraguariensis St. Hil.).
    Debat HJ; Grabiele M; Aguilera PM; Bubillo R; Zapata PD; Marti DA; Ducasse DA
    Virus Genes; 2014 Oct; 49(2):348-50. PubMed ID: 24964778
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-wide transcriptome and expression profile analysis of Phalaenopsis during explant browning.
    Xu C; Zeng B; Huang J; Huang W; Liu Y
    PLoS One; 2015; 10(4):e0123356. PubMed ID: 25874455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach.
    Mehta RH; Ponnuchamy M; Kumar J; Reddy NR
    Funct Integr Genomics; 2017 Jan; 17(1):1-25. PubMed ID: 27709374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ion Torrent and lllumina, two complementary RNA-seq platforms for constructing the holm oak (Quercus ilex) transcriptome.
    Guerrero-Sanchez VM; Maldonado-Alconada AM; Amil-Ruiz F; Verardi A; Jorrín-Novo JV; Rey MD
    PLoS One; 2019; 14(1):e0210356. PubMed ID: 30650136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A high-quality annotated transcriptome of swine peripheral blood.
    Liu H; Smith TPL; Nonneman DJ; Dekkers JCM; Tuggle CK
    BMC Genomics; 2017 Jun; 18(1):479. PubMed ID: 28646867
    [TBL] [Abstract][Full Text] [Related]  

  • 34. De Novo Characterization of the Mung Bean Transcriptome and Transcriptomic Analysis of Adventitious Rooting in Seedlings Using RNA-Seq.
    Li SW; Shi RF; Leng Y
    PLoS One; 2015; 10(7):e0132969. PubMed ID: 26177103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNA sequencing and de novo assembly of Solanum trilobatum leaf transcriptome to identify putative transcripts for major metabolic pathways.
    Lateef A; Prabhudas SK; Natarajan P
    Sci Rep; 2018 Oct; 8(1):15375. PubMed ID: 30337583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in the Physicochemical and Bioactive Properties of Yerba Mate Depending on the Brewing Conditions.
    Najman K; Rajewski R; Sadowska A; Hallmann E; Buczak K
    Molecules; 2024 May; 29(11):. PubMed ID: 38893465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. De novo characterization of the Lycium chinense Mill. leaf transcriptome and analysis of candidate genes involved in carotenoid biosynthesis.
    Wang G; Du X; Ji J; Guan C; Li Z; Josine TL
    Gene; 2015 Jan; 555(2):458-63. PubMed ID: 25445268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antimicrobial activity of Yerba Mate (Ilex paraguariensis) aqueous extracts against Escherichia coli O157:H7 and Staphylococcus aureus.
    Burris KP; Davidson PM; Stewart CN; Harte FM
    J Food Sci; 2011 Aug; 76(6):M456-62. PubMed ID: 22417517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep sequencing reveals transcriptome re-programming of Polygonum multiflorum thunb. roots to the elicitation with methyl jasmonate.
    Liu H; Wu W; Hou K; Chen J; Zhao Z
    Mol Genet Genomics; 2016 Feb; 291(1):337-48. PubMed ID: 26342927
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptome sequence analysis of an ornamental plant, Ananas comosus var. bracteatus, revealed the potential unigenes involved in terpenoid and phenylpropanoid biosynthesis.
    Ma J; Kanakala S; He Y; Zhang J; Zhong X
    PLoS One; 2015; 10(3):e0119153. PubMed ID: 25769053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.