These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 30526500)

  • 1. Avoidance of recognition sites of restriction-modification systems is a widespread but not universal anti-restriction strategy of prokaryotic viruses.
    Rusinov IS; Ershova AS; Karyagina AS; Spirin SA; Alexeevski AV
    BMC Genomics; 2018 Dec; 19(1):885. PubMed ID: 30526500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lifespan of restriction-modification systems critically affects avoidance of their recognition sites in host genomes.
    Rusinov I; Ershova A; Karyagina A; Spirin S; Alexeevski A
    BMC Genomics; 2015 Dec; 16():1084. PubMed ID: 26689194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restriction-Modification systems interplay causes avoidance of GATC site in prokaryotic genomes.
    Ershova A; Rusinov I; Vasiliev M; Spirin S; Karyagina A
    J Bioinform Comput Biol; 2016 Apr; 14(2):1641003. PubMed ID: 26972562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular evolution of bacteriophages: evidence of selection against the recognition sites of host restriction enzymes.
    Sharp PM
    Mol Biol Evol; 1986 Jan; 3(1):75-83. PubMed ID: 2832688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Restriction-Modification Systems in Prokaryotic Evolution and Ecology.
    Ershova AS; Rusinov IS; Spirin SA; Karyagina AS; Alexeevski AV
    Biochemistry (Mosc); 2015 Oct; 80(10):1373-86. PubMed ID: 26567582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of mutations in phage restriction sites during escape from restriction-modification.
    Pleška M; Guet CC
    Biol Lett; 2017 Dec; 13(12):. PubMed ID: 29237814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the prokaryotic virosphere.
    Comeau AM; Hatfull GF; Krisch HM; Lindell D; Mann NH; Prangishvili D
    Res Microbiol; 2008 Jun; 159(5):306-13. PubMed ID: 18639443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial Autoimmunity Due to a Restriction-Modification System.
    Pleška M; Qian L; Okura R; Bergmiller T; Wakamoto Y; Kussell E; Guet CC
    Curr Biol; 2016 Feb; 26(3):404-9. PubMed ID: 26804559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Horizontal gene transfer contributes to the wide distribution and evolution of type II restriction-modification systems.
    Jeltsch A; Pingoud A
    J Mol Evol; 1996 Feb; 42(2):91-6. PubMed ID: 8919860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition sequences of type II restriction systems are constrained by the G + C content of host genomes.
    McClelland M
    Nucleic Acids Res; 1988 Mar; 16(5):2283-94. PubMed ID: 2833730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance.
    Dupuis MÈ; Villion M; Magadán AH; Moineau S
    Nat Commun; 2013; 4():2087. PubMed ID: 23820428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome analyses of cells carrying the Type II Csp231I restriction-modification system reveal cross-talk between two unrelated transcription factors: C protein and the Rac prophage repressor.
    Negri A; Jąkalski M; Szczuka A; Pryszcz LP; Mruk I
    Nucleic Acids Res; 2019 Oct; 47(18):9542-9556. PubMed ID: 31372643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary role of restriction/modification systems as revealed by comparative genome analysis.
    Rocha EP; Danchin A; Viari A
    Genome Res; 2001 Jun; 11(6):946-58. PubMed ID: 11381024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid determination of genomic DNA length for new bacteriophages.
    Serwer P; Hayes SJ; Thomas JA; Griess GA; Hardies SC
    Electrophoresis; 2007 Jun; 28(12):1896-902. PubMed ID: 17480041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal dynamics of methyltransferase and restriction endonuclease accumulation in individual cells after introducing a restriction-modification system.
    Morozova N; Sabantsev A; Bogdanova E; Fedorova Y; Maikova A; Vedyaykin A; Rodic A; Djordjevic M; Khodorkovskii M; Severinov K
    Nucleic Acids Res; 2016 Jan; 44(2):790-800. PubMed ID: 26687717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PADS Arsenal: a database of prokaryotic defense systems related genes.
    Zhang Y; Zhang Z; Zhang H; Zhao Y; Zhang Z; Xiao J
    Nucleic Acids Res; 2020 Jan; 48(D1):D590-D598. PubMed ID: 31620779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selfishness and death: raison d'être of restriction, recombination and mitochondria.
    Kobayashi I
    Trends Genet; 1998 Sep; 14(9):368-74. PubMed ID: 9769733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution.
    Kobayashi I
    Nucleic Acids Res; 2001 Sep; 29(18):3742-56. PubMed ID: 11557807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrient Loading and Viral Memory Drive Accumulation of Restriction Modification Systems in Bloom-Forming Cyanobacteria.
    Papoulis SE; Wilhelm SW; Talmy D; Zinser ER
    mBio; 2021 Jun; 12(3):e0087321. PubMed ID: 34060332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Unique m6A-Dependent Restriction Endonuclease from an Archaeal Virus.
    Lu X; Huang F; Cheng R; Zhu B
    Microbiol Spectr; 2023 Mar; 11(2):e0426222. PubMed ID: 36946751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.