These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 30526856)

  • 41. Human mitochondrial transcription factor A and promoter spacing integrity are required for transcription initiation.
    Dairaghi DJ; Shadel GS; Clayton DA
    Biochim Biophys Acta; 1995 May; 1271(1):127-34. PubMed ID: 7599198
    [TBL] [Abstract][Full Text] [Related]  

  • 42. T7 RNA polymerase-directed transcripts are processed in yeast and link 3' end formation to mRNA nuclear export.
    Dower K; Rosbash M
    RNA; 2002 May; 8(5):686-97. PubMed ID: 12022234
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Yeast mitochondrial RNA polymerase primes mitochondrial DNA polymerase at origins of replication and promoter sequences.
    Sanchez-Sandoval E; Diaz-Quezada C; Velazquez G; Arroyo-Navarro LF; Almanza-Martinez N; Trasviña-Arenas CH; Brieba LG
    Mitochondrion; 2015 Sep; 24():22-31. PubMed ID: 26184436
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7.
    Masters BS; Stohl LL; Clayton DA
    Cell; 1987 Oct; 51(1):89-99. PubMed ID: 3308116
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Precise mapping and characterization of the RNA primers of DNA replication for a yeast hypersuppressive petite by in vitro capping with guanylyltransferase.
    Graves T; Dante M; Eisenhour L; Christianson TW
    Nucleic Acids Res; 1998 Mar; 26(5):1309-16. PubMed ID: 9469842
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two forms of RPO41-dependent RNA polymerase. Regulation of the RNA polymerase by glucose repression may control yeast mitochondrial gene expression.
    Wilcoxen SE; Peterson CR; Winkley CS; Keller MJ; Jaehning JA
    J Biol Chem; 1988 Sep; 263(25):12346-51. PubMed ID: 3045116
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A new point mutation in the nuclear gene of yeast mitochondrial RNA polymerase, RPO41, identifies a functionally important amino-acid residue in a protein region conserved among mitochondrial core enzymes.
    Lisowsky T; Stein T; Michaelis G; Guan MX; Chen XJ; Clark-Walker GD
    Curr Genet; 1996 Nov; 30(5):389-95. PubMed ID: 8929390
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Expression studies and promoter analysis of the nuclear gene for mitochondrial transcription factor 1 (MTF1) in yeast.
    Jan PS; Stein T; Hehl S; Lisowsky T
    Curr Genet; 1999 Aug; 36(1-2):37-48. PubMed ID: 10447593
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanism of RNA polymerase II--specific initiation of transcription in vitro: ATP requirement and uncapped runoff transcripts.
    Bunick D; Zandomeni R; Ackerman S; Weinmann R
    Cell; 1982 Jul; 29(3):877-86. PubMed ID: 7151173
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MTF1, encoding the yeast mitochondrial RNA polymerase specificity factor, is located on chromosome XIII.
    Ulery TL; Jaehning JA
    Yeast; 1994 Jun; 10(6):839-41. PubMed ID: 7975901
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vitro promoter recognition by the catalytic subunit of plant phage-type RNA polymerases.
    Bohne AV; Teubner M; Liere K; Weihe A; Börner T
    Plant Mol Biol; 2016 Oct; 92(3):357-69. PubMed ID: 27497992
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ONE-seq: epitranscriptome and gene-specific profiling of NAD-capped RNA.
    Niu K; Zhang J; Ge S; Li D; Sun K; You Y; Qiu J; Wang K; Wang X; Liu R; Liu Y; Li B; Zhu ZJ; Qu L; Jiang H; Liu N
    Nucleic Acids Res; 2023 Jan; 51(2):e12. PubMed ID: 36477375
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Balance between transcription and RNA degradation is vital for Saccharomyces cerevisiae mitochondria: reduced transcription rescues the phenotype of deficient RNA degradation.
    Rogowska AT; Puchta O; Czarnecka AM; Kaniak A; Stepien PP; Golik P
    Mol Biol Cell; 2006 Mar; 17(3):1184-93. PubMed ID: 16371505
    [TBL] [Abstract][Full Text] [Related]  

  • 54. NAD tagSeq reveals that NAD
    Zhang H; Zhong H; Zhang S; Shao X; Ni M; Cai Z; Chen X; Xia Y
    Proc Natl Acad Sci U S A; 2019 Jun; 116(24):12072-12077. PubMed ID: 31142650
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of point mutations on in vitro transcription from the promoter for the large ribosomal RNA gene of yeast mitochondria.
    Schinkel AH; Groot Koerkamp MJ; Stuiver MH; Van der Horst GT; Tabak HF
    Nucleic Acids Res; 1987 Jul; 15(14):5597-612. PubMed ID: 3302943
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transcriptional Fidelity of Mitochondrial RNA Polymerase RpoTm from Arabidopsis thaliana.
    Yadav AK; Sahoo PK; Goswami HN; Jain D
    J Mol Biol; 2019 Dec; 431(24):4767-4783. PubMed ID: 31626802
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Disruption of the 5' stem-loop of yeast U6 RNA induces trimethylguanosine capping of this RNA polymerase III transcript in vivo.
    Kwan S; Gerlach VL; Brow DA
    RNA; 2000 Dec; 6(12):1859-69. PubMed ID: 11142384
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of a single transcriptional initiation site for the glutamic tRNA and COB genes in yeast mitochondria.
    Christianson T; Edwards JC; Mueller DM; Rabinowitz M
    Proc Natl Acad Sci U S A; 1983 Sep; 80(18):5564-8. PubMed ID: 6136968
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The ABCs of mitochondrial transcription.
    Shoubridge EA
    Nat Genet; 2002 Jul; 31(3):227-8. PubMed ID: 12089513
    [No Abstract]   [Full Text] [Related]  

  • 60. Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor.
    Fjeld CC; Birdsong WT; Goodman RH
    Proc Natl Acad Sci U S A; 2003 Aug; 100(16):9202-7. PubMed ID: 12872005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.