BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 30527249)

  • 1. Evolution of robotic systems for transoral head and neck surgery.
    Poon H; Li C; Gao W; Ren H; Lim CM
    Oral Oncol; 2018 Dec; 87():82-88. PubMed ID: 30527249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotic Head and Neck Surgery: History, Technical Evolution and the Future.
    Garas G; Arora A
    ORL J Otorhinolaryngol Relat Spec; 2018; 80(3-4):117-124. PubMed ID: 29925061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First use of a new retractor in transoral robotic surgery (TORS).
    Hasskamp P; Lang S; Holtmann L; Stuck BA; Mattheis S
    Eur Arch Otorhinolaryngol; 2016 Jul; 273(7):1913-7. PubMed ID: 26179869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endoscopic video-assisted transoral resection of lateral oropharyngeal tumors.
    Zoysa N; Sethi N; Jose J
    Head Neck; 2017 Oct; 39(10):2127-2131. PubMed ID: 28556486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flex Robotic System in transoral robotic surgery: The first 40 patients.
    Mattheis S; Hasskamp P; Holtmann L; Schäfer C; Geisthoff U; Dominas N; Lang S
    Head Neck; 2017 Mar; 39(3):471-475. PubMed ID: 27792258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early assessment of feasibility and technical specificities of transoral robotic surgery using the da Vinci Xi.
    Gorphe P; Von Tan J; El Bedoui S; Hartl DM; Auperin A; Qassemyar Q; Moya-Plana A; Janot F; Julieron M; Temam S
    J Robot Surg; 2017 Dec; 11(4):455-461. PubMed ID: 28064382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Next-Generation Robotic Head and Neck Surgery.
    Orosco RK; Arora A; Jeannon JP; Holsinger FC
    ORL J Otorhinolaryngol Relat Spec; 2018; 80(3-4):213-219. PubMed ID: 30404095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transoral endoscopic nasopharyngectomy with a flexible next-generation robotic surgical system.
    Tsang RK; Holsinger FC
    Laryngoscope; 2016 Oct; 126(10):2257-62. PubMed ID: 27312523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perioperative safety, feasibility, and oncologic utility of transoral robotic surgery with da Vinci Xi platform.
    Gabrysz-Forget F; Mur T; Dolan R; Yarlagadda B
    J Robot Surg; 2020 Feb; 14(1):85-89. PubMed ID: 30825098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Advances in transoral robotic surgery].
    Mattheis S; Kansy B; Haßkamp P; Holtmann L; Lang S
    HNO; 2015 Nov; 63(11):752-7. PubMed ID: 26449670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of a computer-assisted flexible endoscope system for transoral surgery of the hypopharynx and upper esophagus.
    Friedrich DT; Scheithauer MO; Greve J; Rotter N; Doescher J; Hoffmann TK; Schuler PJ
    Eur Arch Otorhinolaryngol; 2017 May; 274(5):2287-2293. PubMed ID: 28236012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraoperative imaging during minimally invasive transoral robotic surgery using near-infrared light.
    Scott-Wittenborn N; Jackson RS
    Am J Otolaryngol; 2018; 39(2):220-222. PubMed ID: 29128262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative safety and effectiveness of transoral robotic surgery versus open surgery for oropharyngeal cancer: A systematic review and meta-analysis.
    Park DA; Lee MJ; Kim SH; Lee SH
    Eur J Surg Oncol; 2020 Apr; 46(4 Pt A):644-649. PubMed ID: 31627931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transoral supraglottic laryngectomy using a next-generation single-port robotic surgical system.
    Orosco RK; Tam K; Nakayama M; Holsinger FC; Spriano G
    Head Neck; 2019 Jul; 41(7):2143-2147. PubMed ID: 30775823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compartmental Transoral Robotic Lateral Oropharyngectomy with the da Vinci Single-Port System: Surgical Technique.
    De Virgilio A; Costantino A; Festa BM; Sampieri C; Spriano G; Kim SH
    Ann Surg Oncol; 2023 Sep; 30(9):5728-5732. PubMed ID: 37410312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of transoral robotic surgery in current head & neck practice.
    Hamilton D; Paleri V
    Surgeon; 2017 Jun; 15(3):147-154. PubMed ID: 27742406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of transoral robotic-assisted high-resolution microendoscopic imaging of oropharyngeal squamous cell carcinoma.
    Patsias A; Giraldez-Rodriguez L; Polydorides AD; Richards-Kortum R; Anandasabapathy S; Quang T; Sikora AG; Miles B
    Head Neck; 2015 Aug; 37(8):E99-102. PubMed ID: 25327825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible next-generation robotic surgical system for transoral endoscopic hypopharyngectomy: A comparative preclinical study.
    Tateya I; Koh YW; Tsang RK; Hong SS; Uozumi R; Kishimoto Y; Sugimoto T; Holsinger FC
    Head Neck; 2018 Jan; 40(1):16-23. PubMed ID: 29130568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transoral surgery (TOS) in oropharyngeal cancer: Different tools, a single mini-invasive philosophy.
    Tirelli G; Boscolo Nata F; Piovesana M; Quatela E; Gardenal N; Hayden RE
    Surg Oncol; 2018 Dec; 27(4):643-649. PubMed ID: 30449487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional outcomes, feasibility, and safety of resection of transoral robotic surgery: single-institution series of 35 consecutive cases of transoral robotic surgery for oropharyngeal squamous cell carcinoma.
    Lörincz BB; Möckelmann N; Busch CJ; Knecht R
    Head Neck; 2015 Nov; 37(11):1618-24. PubMed ID: 24955923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.