These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 30527644)

  • 1. Engineering Biocatalytic and Biosorptive Materials for Environmental Applications.
    Zhu B; Chen Y; Wei N
    Trends Biotechnol; 2019 Jun; 37(6):661-676. PubMed ID: 30527644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Application of synthetic biology in environmental remediation].
    Tang H; Wang W; Zhang L; Huang L; Lu X; Xu P
    Sheng Wu Gong Cheng Xue Bao; 2017 Mar; 33(3):506-515. PubMed ID: 28941348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoremediation technologies for sustainable remediation of contaminated environments: Recent advances and challenges.
    Ganie AS; Bano S; Khan N; Sultana S; Rehman Z; Rahman MM; Sabir S; Coulon F; Khan MZ
    Chemosphere; 2021 Jul; 275():130065. PubMed ID: 33652279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocatalytic remediation of industrial pollutants for environmental sustainability: Research needs and opportunities.
    Pandey AK; Gaur VK; Udayan A; Varjani S; Kim SH; Wong JWC
    Chemosphere; 2021 Jun; 272():129936. PubMed ID: 35534980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering biomaterials for the recovery of rare earth elements.
    Ye Q; Wang D; Wei N
    Trends Biotechnol; 2024 May; 42(5):575-590. PubMed ID: 37985335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainable exposure prevention through innovative detection and remediation technologies from the NIEHS Superfund Research Program.
    Henry HF; Suk WA
    Rev Environ Health; 2017 Mar; 32(1-2):35-44. PubMed ID: 28212109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carrageenan-based nano-hybrid materials for the mitigation of hazardous environmental pollutants.
    Li W; Qamar SA; Qamar M; Basharat A; Bilal M; Iqbal HMN
    Int J Biol Macromol; 2021 Nov; 190():700-712. PubMed ID: 34520777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme-linked carbon nanotubes as biocatalytic tools to degrade and mitigate environmental pollutants.
    Bilal M; Singh AK; Iqbal HMN; Zdarta J; Chrobok A; Jesionowski T
    Environ Res; 2024 Jan; 241():117579. PubMed ID: 37944691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remediation of emerging environmental pollutants: A review based on advances in the uses of eco-friendly biofabricated nanomaterials.
    Bhavya G; Belorkar SA; Mythili R; Geetha N; Shetty HS; Udikeri SS; Jogaiah S
    Chemosphere; 2021 Jul; 275():129975. PubMed ID: 33631403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered biosynthetic pathways and biocatalytic cascades for sustainable synthesis.
    Kuska J; O'Reilly E
    Curr Opin Chem Biol; 2020 Oct; 58():146-154. PubMed ID: 33152607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme discovery and engineering for sustainable plastic recycling.
    Zhu B; Wang D; Wei N
    Trends Biotechnol; 2022 Jan; 40(1):22-37. PubMed ID: 33676748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Industrial applications of enzyme biocatalysis: Current status and future aspects.
    Choi JM; Han SS; Kim HS
    Biotechnol Adv; 2015 Nov; 33(7):1443-54. PubMed ID: 25747291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The imminent role of protein engineering in synthetic biology.
    Foo JL; Ching CB; Chang MW; Leong SS
    Biotechnol Adv; 2012; 30(3):541-9. PubMed ID: 21963685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient biocatalytic degradation of pollutants by enzyme-releasing self-propelled motors.
    Orozco J; Vilela D; Valdés-Ramírez G; Fedorak Y; Escarpa A; Vazquez-Duhalt R; Wang J
    Chemistry; 2014 Mar; 20(10):2866-71. PubMed ID: 24500996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-organic cages against toxic chemicals and pollutants.
    Percástegui EG
    Chem Commun (Camb); 2022 Apr; 58(33):5055-5071. PubMed ID: 35383805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection and remediation of pollutants to maintain ecosustainability employing nanotechnology: A review.
    Yadav N; Garg VK; Chhillar AK; Rana JS
    Chemosphere; 2021 Oct; 280():130792. PubMed ID: 34162093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent trends and challenges with the synthesis of membranes: Industrial opportunities towards environmental remediation.
    Ahmad A; Tariq S; Zaman JU; Martin Perales AI; Mubashir M; Luque R
    Chemosphere; 2022 Nov; 306():135634. PubMed ID: 35817181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into MXene applications for sustainable environmental remediation.
    Jatoi AS; Mubarak NM; Hashmi Z; Solangi NH; Karri RR; Hua TY; Mazari SA; Koduru JR; Alfantazi A
    Chemosphere; 2023 Feb; 313():137497. PubMed ID: 36493892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Enzymes for Environmental Sustainability.
    Radley E; Davidson J; Foster J; Obexer R; Bell EL; Green AP
    Angew Chem Int Ed Engl; 2023 Dec; 62(52):e202309305. PubMed ID: 37651344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein engineering for natural product biosynthesis and synthetic biology applications.
    Calzini MA; Malico AA; Mitchler MM; Williams GJ
    Protein Eng Des Sel; 2021 Feb; 34():. PubMed ID: 34137436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.