BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30527677)

  • 41. Receptive-field structure of direction-selective ganglion cells projecting to the goldfish tectum.
    Golovkin M; Gorbunov V; Maximova E; Maximov V
    Ann N Y Acad Sci; 2005 Jun; 1048():435-6. PubMed ID: 16154970
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Retinal ganglion cell death induced by unilateral tectal ablation in Xenopus.
    Straznicky C; McCart R; Tóth P
    Vis Neurosci; 1989; 2(4):339-47. PubMed ID: 2487657
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Properties of neurons of the tectal portion of the visual system of the axolotl Ambystoma mexicanum].
    Margolis SE
    Zh Evol Biokhim Fiziol; 1976; 12(6):560-4. PubMed ID: 1020556
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Discharges of neurons of the frog tectum during electric stimulation of individual retinal ganglion cells].
    Kuras AV; Khusainoviene NP
    Neirofiziologiia; 1984; 16(6):829-35. PubMed ID: 6097825
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Golgi study of goldfish optic tectum.
    Meek J; Schellart NA
    J Comp Neurol; 1978 Nov; 182(1):89-122. PubMed ID: 81216
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Visual and nonvisual units recorded from the optic tectum of Gallus domesticus.
    Cotter JR
    Brain Behav Evol; 1976; 13(1):1-21. PubMed ID: 974720
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Retinal origin of orientation but not direction selective maps in the superior colliculus.
    de Malmazet D; Kühn NK; Li C; Farrow K
    Curr Biol; 2024 Mar; 34(6):1222-1233.e7. PubMed ID: 38417446
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Readjustment of retinotectal projection following reimplantation of a rotated or inverted tectal tissue in adult goldfish.
    Yoon MG
    J Physiol; 1975 Oct; 252(1):137-58. PubMed ID: 1202195
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spontaneous retinal activity is tonic and does not drive tectal activity during activity-dependent refinement in regeneration.
    Kolls BJ; Meyer RL
    J Neurosci; 2002 Apr; 22(7):2626-36. PubMed ID: 11923428
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interactions between optic fibres controlling the locations of their terminals in the goldfish optic tectum.
    Cook JE
    J Embryol Exp Morphol; 1979 Aug; 52():89-103. PubMed ID: 521756
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regional specialization in retinal ganglion cell projection to optic tectum of Dipsosaurus dorsalis (Iguanidae).
    Peterson EH
    J Comp Neurol; 1981 Feb; 196(2):225-52. PubMed ID: 7217356
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A comparison of the normal and regenerated retinotectal pathways of goldfish.
    Stuermer CA; Easter SS
    J Comp Neurol; 1984 Feb; 223(1):57-76. PubMed ID: 6200514
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative studies on ipsilateral type 2 retinotectotectal (IRTT) units in frogs: homologies with R3 ganglion cells.
    Garcia R; Gaillard F
    J Comp Physiol A; 1989 Jan; 164(3):377-89. PubMed ID: 2785209
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rules of order in the retinotectal fascicles of goldfish.
    Stuermer CA; Easter SS
    J Neurosci; 1984 Apr; 4(4):1045-51. PubMed ID: 6325602
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Compression and expansion without impulse activity in the retinotectal projection of goldfish.
    Meyer RL; Wolcott LL
    J Neurobiol; 1987 Nov; 18(6):549-67. PubMed ID: 3694194
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Goldfish retinal axons respond to position-specific properties of tectal cell membranes in vitro.
    Vielmetter J; Stuermer CA
    Neuron; 1989 Apr; 2(4):1331-9. PubMed ID: 2627373
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Target regulation of protein biosynthesis in retinal ganglion cells during regeneration of the goldfish visual system.
    Giulian D
    Brain Res; 1984 Mar; 296(1):198-201. PubMed ID: 6713207
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Input from torus longitudinalis drives binocularity and spatial summation in zebrafish optic tectum.
    Tesmer AL; Fields NP; Robles E
    BMC Biol; 2022 Jan; 20(1):24. PubMed ID: 35073895
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Color properties of the motion detectors projecting to the goldfish tectum.
    Maximova EM; Maximov PV; Damjanović I; Aliper AT; Kasparson AA; Maximov VV
    J Integr Neurosci; 2015 Dec; ():1550027. PubMed ID: 26678819
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Apparent movement of optic terminals out of a local postsynaptically blocked region in goldfish optic tectum.
    Schmidt JT
    J Neurophysiol; 1985 Jan; 53(1):237-51. PubMed ID: 2983036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.