These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 30528685)
1. Anti-biofilm and anti-adherence properties of novel cyclic dipeptides against oral pathogens. Simon G; Bérubé C; Voyer N; Grenier D Bioorg Med Chem; 2019 Jun; 27(12):2323-2331. PubMed ID: 30528685 [TBL] [Abstract][Full Text] [Related]
2. Inhibitory efficacy of cyclo(L-leucyl-L-prolyl) from mangrove rhizosphere bacterium-Bacillus amyloliquefaciens (MMS-50) toward cariogenic properties of Streptococcus mutans. Gowrishankar S; Poornima B; Pandian SK Res Microbiol; 2014 May; 165(4):278-89. PubMed ID: 24698790 [TBL] [Abstract][Full Text] [Related]
3. In vitro efficacy of eugenol in inhibiting single and mixed-biofilms of drug-resistant strains of Candida albicans and Streptococcus mutans. Jafri H; Khan MSA; Ahmad I Phytomedicine; 2019 Feb; 54():206-213. PubMed ID: 30668370 [TBL] [Abstract][Full Text] [Related]
4. Antimicrobial and Anti-Biofilm Activities of the Methanol Extracts of Medicinal Plants against Dental Pathogens Choi HA; Cheong DE; Lim HD; Kim WH; Ham MH; Oh MH; Wu Y; Shin HJ; Kim GJ J Microbiol Biotechnol; 2017 Jul; 27(7):1242-1248. PubMed ID: 28478657 [TBL] [Abstract][Full Text] [Related]
5. Tart cherry (Prunus cerasus L.) fractions inhibit biofilm formation and adherence properties of oral pathogens and enhance oral epithelial barrier function. Ben Lagha A; LeBel G; Grenier D Phytother Res; 2020 Apr; 34(4):886-895. PubMed ID: 31846135 [TBL] [Abstract][Full Text] [Related]
6. Rhamnus prinoides (gesho) stem extract prevents co-culture biofilm formation by Streptococcus mutans and Candida albicans. Campbell M; Fathi R; Cheng SY; Ho A; Gilbert ES Lett Appl Microbiol; 2020 Sep; 71(3):294-302. PubMed ID: 32358834 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of a anti-fungal action of selected cyclic dipeptides. Graz M; Jamie H; Versluis C; Milne P Pharmazie; 2001 Nov; 56(11):900-1. PubMed ID: 11817182 [No Abstract] [Full Text] [Related]
8. Antiadherent activity of Schinus terebinthifolius and Croton urucurana extracts on in vitro biofilm formation of Candida albicans and Streptococcus mutans. Barbieri DS; Tonial F; Lopez PV; Sales Maia BH; Santos GD; Ribas MO; Glienke C; Vicente VA Arch Oral Biol; 2014 Sep; 59(9):887-96. PubMed ID: 24907518 [TBL] [Abstract][Full Text] [Related]
9. Antimicrobial and antibiofilm activities of Casearia sylvestris extracts from distinct Brazilian biomes against Streptococcus mutans and Candida albicans. Ribeiro SM; Fratucelli ÉDO; Bueno PCP; de Castro MKV; Francisco AA; Cavalheiro AJ; Klein MI BMC Complement Altern Med; 2019 Nov; 19(1):308. PubMed ID: 31718633 [TBL] [Abstract][Full Text] [Related]
10. Hydroxychalcone inhibitors of Streptococcus mutans glucosyl transferases and biofilms as potential anticaries agents. Nijampatnam B; Casals L; Zheng R; Wu H; Velu SE Bioorg Med Chem Lett; 2016 Aug; 26(15):3508-13. PubMed ID: 27371109 [TBL] [Abstract][Full Text] [Related]
11. Rhamnolipid inspired lipopeptides effective in preventing adhesion and biofilm formation of Candida albicans. Jovanovic M; Radivojevic J; O'Connor K; Blagojevic S; Begovic B; Lukic V; Nikodinovic-Runic J; Savic V Bioorg Chem; 2019 Jun; 87():209-217. PubMed ID: 30901676 [TBL] [Abstract][Full Text] [Related]
12. Effects of antimicrobial peptide L-K6, a temporin-1CEb analog on oral pathogen growth, Streptococcus mutans biofilm formation, and anti-inflammatory activity. Shang D; Liang H; Wei S; Yan X; Yang Q; Sun Y Appl Microbiol Biotechnol; 2014 Oct; 98(20):8685-95. PubMed ID: 25056289 [TBL] [Abstract][Full Text] [Related]
13. The antimicrobial and antiadhesion activities of micellar solutions of surfactin, CTAB and CPCl with terpinen-4-ol: applications to control oral pathogens. Bucci AR; Marcelino L; Mendes RK; Etchegaray A World J Microbiol Biotechnol; 2018 Jun; 34(6):86. PubMed ID: 29876752 [TBL] [Abstract][Full Text] [Related]
14. Fungal biofilm inhibitors from a human oral microbiome-derived bacterium. Wang X; Du L; You J; King JB; Cichewicz RH Org Biomol Chem; 2012 Mar; 10(10):2044-50. PubMed ID: 22281750 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of oxazaborolidine activity on Streptococcus mutans biofilm formation. Jabbour A; Srebnik M; Zaks B; Dembitsky V; Steinberg D Int J Antimicrob Agents; 2005 Dec; 26(6):491-6. PubMed ID: 16280242 [TBL] [Abstract][Full Text] [Related]
16. Rational design of peptides with enhanced antimicrobial and anti-biofilm activities against cariogenic bacterium Streptococcus mutans. Liang D; Li H; Xu X; Liang J; Dai X; Zhao W Chem Biol Drug Des; 2019 Oct; 94(4):1768-1781. PubMed ID: 31207076 [TBL] [Abstract][Full Text] [Related]
17. Antibacterial and antifungal activities of 2,3-pyrrolidinedione derivatives against oral pathogens. Dhavan AA; Ionescu AC; Kaduskar RD; Brambilla E; Dallavalle S; Varoni EM; Iriti M Bioorg Med Chem Lett; 2016 Mar; 26(5):1376-80. PubMed ID: 26860735 [TBL] [Abstract][Full Text] [Related]
18. Nicotine Enhances Interspecies Relationship between Liu S; Qiu W; Zhang K; Zhou X; Ren B; He J; Xu X; Cheng L; Li M Biomed Res Int; 2017; 2017():7953920. PubMed ID: 28280743 [No Abstract] [Full Text] [Related]
19. Effect of the antimicrobial decapeptide KSL on the growth of oral pathogens and Streptococcus mutans biofilm. Liu Y; Wang L; Zhou X; Hu S; Zhang S; Wu H Int J Antimicrob Agents; 2011 Jan; 37(1):33-8. PubMed ID: 20956070 [TBL] [Abstract][Full Text] [Related]
20. Antimicrobial and antibiofilm activities of prenylated flavanones from Macaranga tanarius. Lee JH; Kim YG; Khadke SK; Yamano A; Woo JT; Lee J Phytomedicine; 2019 Oct; 63():153033. PubMed ID: 31352284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]