These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 30528919)

  • 1. Various cell architectures of capacitive deionization: Recent advances and future trends.
    Tang W; Liang J; He D; Gong J; Tang L; Liu Z; Wang D; Zeng G
    Water Res; 2019 Mar; 150():225-251. PubMed ID: 30528919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress in materials and architectures for capacitive deionization: A comprehensive review.
    Datar SD; Mane R; Jha N
    Water Environ Res; 2022 Mar; 94(3):e10696. PubMed ID: 35289462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Faradic capacitive deionization (FCDI) for desalination and ion removal from wastewater.
    Sayed ET; Al Radi M; Ahmad A; Abdelkareem MA; Alawadhi H; Atieh MA; Olabi AG
    Chemosphere; 2021 Jul; 275():130001. PubMed ID: 33984902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Faradaic Electrodes Open a New Era for Capacitive Deionization.
    Li Q; Zheng Y; Xiao D; Or T; Gao R; Li Z; Feng M; Shui L; Zhou G; Wang X; Chen Z
    Adv Sci (Weinh); 2020 Nov; 7(22):2002213. PubMed ID: 33240769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review.
    Zhang C; He D; Ma J; Tang W; Waite TD
    Water Res; 2018 Jan; 128():314-330. PubMed ID: 29107916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Faradic Electrochemical Deionization: System Architectures
    Liu Y; Wang K; Xu X; Eid K; Abdullah AM; Pan L; Yamauchi Y
    ACS Nano; 2021 Sep; 15(9):13924-13942. PubMed ID: 34498859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capacitive deionization for wastewater treatment: Opportunities and challenges.
    Kalfa A; Shapira B; Shopin A; Cohen I; Avraham E; Aurbach D
    Chemosphere; 2020 Feb; 241():125003. PubMed ID: 31590019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of Energy Storage Materials for Water Desalination via Next-Generation Capacitive Deionization.
    Shi W; Gao X; Mao J; Qian X; Liu W; Wu F; Li H; Zeng Z; Shen J; Cao X
    Front Chem; 2020; 8():415. PubMed ID: 32500060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes.
    Tang W; He D; Zhang C; Kovalsky P; Waite TD
    Water Res; 2017 Sep; 120():229-237. PubMed ID: 28500988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Progress and Challenges in Faradic Capacitive Desalination: From Mechanism to Performance.
    Hao Z; Sun X; Chen J; Zhou X; Zhang Y
    Small; 2023 Aug; 19(33):e2300253. PubMed ID: 37093194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinel LiMn
    Jiang Y; Li K; Alhassan SI; Cao Y; Deng H; Tan S; Wang H; Tang C; Chai L
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Electrochemistry of Carbon Electrodes and Faradaic Reactions in Capacitive Deionization.
    Kang JS; Kim S; Kang J; Joo H; Jang J; Jo K; Park S; Kim HI; Yoo SJ; Yoon J; Sung YE; Hatton TA
    Environ Sci Technol; 2022 Sep; 56(17):12602-12612. PubMed ID: 35998306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive review of capacitive deionization technology with biochar-based electrodes: Biochar-based electrode preparation, deionization mechanism and applications.
    Chu M; Tian W; Zhao J; Zou M; Lu Z; Zhang D; Jiang J
    Chemosphere; 2022 Nov; 307(Pt 3):136024. PubMed ID: 35973487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of Activated Carbon Decorated with ZnO Nanorod-Based Electrodes for Desalination of Brackish Water Using Capacitive Deionization Technology.
    Martinez J; Colán M; Castillón R; Ramos PG; Paria R; Sánchez L; Rodríguez JM
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self similarities in desalination dynamics and performance using capacitive deionization.
    Ramachandran A; Hemmatifar A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Sep; 140():323-334. PubMed ID: 29734040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory of water treatment by capacitive deionization with redox active porous electrodes.
    He F; Biesheuvel PM; Bazant MZ; Hatton TA
    Water Res; 2018 Apr; 132():282-291. PubMed ID: 29331915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoarchitectonics of Metal-Organic Frameworks for Capacitive Deionization via Controlled Pyrolyzed Approaches.
    Wang H; Chen B; Liu DJ; Xu X; Osmieri L; Yamauchi Y
    Small; 2022 Jan; 18(2):e2102477. PubMed ID: 34585513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Brief Review on High-Performance Capacitive Deionization Enabled by Intercalation Electrodes.
    Liu Z; Shang X; Li H; Liu Y
    Glob Chall; 2021 Jan; 5(1):2000054. PubMed ID: 33437523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achieving Enhanced Capacitive Deionization by Interfacial Coupling in PEDOT Reinforced Cobalt Hexacyanoferrate Nanoflake Arrays.
    Shi W; Xue M; Qian X; Xu X; Gao X; Zheng D; Liu W; Wu F; Gao C; Shen J; Cao X
    Glob Chall; 2021 Aug; 5(8):2000128. PubMed ID: 34377532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Dual-Ion Capacitive Deionization System Design with Ultrahigh Desalination Performance.
    Jiang Y; Hou Z; Yan L; Gang H; Wang H; Chai L
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.