These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
449 related articles for article (PubMed ID: 30528936)
1. Role of Actinobacteria and Coriobacteriia in the antidepressant effects of ketamine in an inflammation model of depression. Huang N; Hua D; Zhan G; Li S; Zhu B; Jiang R; Yang L; Bi J; Xu H; Hashimoto K; Luo A; Yang C Pharmacol Biochem Behav; 2019 Jan; 176():93-100. PubMed ID: 30528936 [TBL] [Abstract][Full Text] [Related]
2. Possible role of the gut microbiota-brain axis in the antidepressant effects of (R)-ketamine in a social defeat stress model. Yang C; Qu Y; Fujita Y; Ren Q; Ma M; Dong C; Hashimoto K Transl Psychiatry; 2017 Dec; 7(12):1294. PubMed ID: 29249803 [TBL] [Abstract][Full Text] [Related]
3. Comparison of (R)-ketamine and lanicemine on depression-like phenotype and abnormal composition of gut microbiota in a social defeat stress model. Qu Y; Yang C; Ren Q; Ma M; Dong C; Hashimoto K Sci Rep; 2017 Nov; 7(1):15725. PubMed ID: 29147024 [TBL] [Abstract][Full Text] [Related]
4. Gut microbiota is involved in the antidepressant-like effect of (S)-norketamine in an inflammation model of depression. Wang Y; Jiang R; Wu Z; Zhou L; Xu J; Huang C; Yang L; Zhu B; Yan E; Liu C; Yang C Pharmacol Biochem Behav; 2021 Aug; 207():173226. PubMed ID: 34217782 [TBL] [Abstract][Full Text] [Related]
5. Sex differences in the rapid and the sustained antidepressant-like effects of ketamine in stress-naïve and "depressed" mice exposed to chronic mild stress. Franceschelli A; Sens J; Herchick S; Thelen C; Pitychoutis PM Neuroscience; 2015 Apr; 290():49-60. PubMed ID: 25595985 [TBL] [Abstract][Full Text] [Related]
6. Lack of rapid antidepressant effects of Kir4.1 channel inhibitors in a chronic social defeat stress model: Comparison with (R)-ketamine. Xiong Z; Zhang K; Ishima T; Ren Q; Ma M; Pu Y; Chang L; Chen J; Hashimoto K Pharmacol Biochem Behav; 2019 Jan; 176():57-62. PubMed ID: 30502360 [TBL] [Abstract][Full Text] [Related]
7. Involvement of AMPA receptors in the antidepressant-like effects of dextromethorphan in mice. Nguyen L; Matsumoto RR Behav Brain Res; 2015 Dec; 295():26-34. PubMed ID: 25804358 [TBL] [Abstract][Full Text] [Related]
8. Rapid-acting antidepressant ketamine, its metabolites and other candidates: A historical overview and future perspective. Hashimoto K Psychiatry Clin Neurosci; 2019 Oct; 73(10):613-627. PubMed ID: 31215725 [TBL] [Abstract][Full Text] [Related]
9. (S)-norketamine and (2S,6S)-hydroxynorketamine exert potent antidepressant-like effects in a chronic corticosterone-induced mouse model of depression. Yokoyama R; Higuchi M; Tanabe W; Tsukada S; Naito M; Yamaguchi T; Chen L; Kasai A; Seiriki K; Nakazawa T; Nakagawa S; Hashimoto K; Hashimoto H; Ago Y Pharmacol Biochem Behav; 2020 Apr; 191():172876. PubMed ID: 32088360 [TBL] [Abstract][Full Text] [Related]
10. Antidepressant-like effects of Schisandrin on lipopolysaccharide-induced mice : Gut microbiota, short chain fatty acid and TLR4/NF-κB signaling pathway. Sun Y; Yan T; Gong G; Li Y; Zhang J; Wu B; Bi K; Jia Y Int Immunopharmacol; 2020 Dec; 89(Pt A):107029. PubMed ID: 33045567 [TBL] [Abstract][Full Text] [Related]
11. Contribution of skeletal muscular glycine to rapid antidepressant effects of ketamine in an inflammation-induced mouse model of depression. Huang N; Wang Y; Zhan G; Yu F; Li S; Hua D; Jiang R; Li S; Wu Y; Yang L; Zhu B; Hua F; Luo A; Yang C Psychopharmacology (Berl); 2019 Dec; 236(12):3513-3523. PubMed ID: 31321459 [TBL] [Abstract][Full Text] [Related]
12. Molecular mechanisms of the rapid-acting and long-lasting antidepressant actions of (R)-ketamine. Hashimoto K Biochem Pharmacol; 2020 Jul; 177():113935. PubMed ID: 32224141 [TBL] [Abstract][Full Text] [Related]
13. NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice. Walker AK; Budac DP; Bisulco S; Lee AW; Smith RA; Beenders B; Kelley KW; Dantzer R Neuropsychopharmacology; 2013 Aug; 38(9):1609-16. PubMed ID: 23511700 [TBL] [Abstract][Full Text] [Related]
14. Comparison of antidepressant and side effects in mice after intranasal administration of (R,S)-ketamine, (R)-ketamine, and (S)-ketamine. Chang L; Zhang K; Pu Y; Qu Y; Wang SM; Xiong Z; Ren Q; Dong C; Fujita Y; Hashimoto K Pharmacol Biochem Behav; 2019 Jun; 181():53-59. PubMed ID: 31034852 [TBL] [Abstract][Full Text] [Related]
16. Rapid-acting and long-lasting antidepressant-like action of (R)-ketamine in Nrf2 knock-out mice: a role of TrkB signaling. Qu Y; Shan J; Wang S; Chang L; Pu Y; Wang X; Tan Y; Yamamoto M; Hashimoto K Eur Arch Psychiatry Clin Neurosci; 2021 Apr; 271(3):439-446. PubMed ID: 33180200 [TBL] [Abstract][Full Text] [Related]
17. Effects of ketamine and N-methyl-D-aspartate on fluoxetine-induced antidepressant-related behavior using the forced swimming test. Owolabi RA; Akanmu MA; Adeyemi OI Neurosci Lett; 2014 Apr; 566():172-6. PubMed ID: 24530380 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms of ketamine action as an antidepressant. Zanos P; Gould TD Mol Psychiatry; 2018 Apr; 23(4):801-811. PubMed ID: 29532791 [TBL] [Abstract][Full Text] [Related]
19. Extrasynaptic CaMKIIα is involved in the antidepressant effects of ketamine by downregulating GluN2B receptors in an LPS-induced depression model. Tang XH; Zhang GF; Xu N; Duan GF; Jia M; Liu R; Zhou ZQ; Yang JJ J Neuroinflammation; 2020 Jun; 17(1):181. PubMed ID: 32522211 [TBL] [Abstract][Full Text] [Related]
20. The N-methyl-D-aspartate receptor antagonist d-methadone acutely improves depressive-like behavior in the forced swim test performance of rats. Hanania T; Manfredi P; Inturrisi C; Vitolo OV Exp Clin Psychopharmacol; 2020 Apr; 28(2):196-201. PubMed ID: 31368772 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]