BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 30528990)

  • 1. Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens.
    Vijay R; Lenin Singaravelu D; Vinod A; Sanjay MR; Siengchin S; Jawaid M; Khan A; Parameswaranpillai J
    Int J Biol Macromol; 2019 Mar; 125():99-108. PubMed ID: 30528990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis.L.
    Senthamaraikannan P; Kathiresan M
    Carbohydr Polym; 2018 Apr; 186():332-343. PubMed ID: 29455994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of raw and alkali treated new natural cellulosic fibres extracted from the aerial roots of banyan tree.
    Ganapathy T; Sathiskumar R; Senthamaraikannan P; Saravanakumar SS; Khan A
    Int J Biol Macromol; 2019 Oct; 138():573-581. PubMed ID: 31348971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of raw and alkali treated cellulosic Grewia Flavescens natural fiber.
    Tiwari YM; Sarangi SK
    Int J Biol Macromol; 2022 Jun; 209(Pt B):1933-1942. PubMed ID: 35489622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physico-chemical and extraction properties on alkali-treated Acacia pennata fiber.
    Sheeba KRJ; Alagarasan JK; Dharmaraja J; Kavitha SA; Shobana S; Arvindnarayan S; Vadivel M; Lee M; Retnam KP
    Environ Res; 2023 Sep; 233():116415. PubMed ID: 37343749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing the alkali treatment of cellulosic Himalayan nettle fibre for reinforcement in polymer composites.
    Mudoi MP; Sinha S; Parthasarthy V
    Carbohydr Polym; 2022 Nov; 296():119937. PubMed ID: 36087986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extraction and characterization of a new natural cellulosic fiber from the Habara Plant Stem (HF) as potential reinforcement for polymer composites.
    Vijayakkannan K; Rajendran I
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):131818. PubMed ID: 38670191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites.
    N S; I R; T R
    Carbohydr Polym; 2018 Sep; 195():566-575. PubMed ID: 29805013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves.
    A N B; K J N
    Carbohydr Polym; 2017 Oct; 174():200-208. PubMed ID: 28821059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of natural cellulosic fiber extracted from Grewia ferruginea plant stem.
    Birlie B; Mamay T
    Int J Biol Macromol; 2024 Jun; 271(Pt 2):132858. PubMed ID: 38845254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a novel natural cellulosic fiber from Calotropis gigantea fruit bunch for ecofriendly polymer composites.
    Narayanasamy P; Balasundar P; Senthil S; Sanjay MR; Siengchin S; Khan A; Asiri AM
    Int J Biol Macromol; 2020 May; 150():793-801. PubMed ID: 32068059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement in mechanical properties of jute fibres through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model.
    Roy A; Chakraborty S; Kundu SP; Basak RK; Majumder SB; Adhikari B
    Bioresour Technol; 2012 Mar; 107():222-8. PubMed ID: 22209134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive characterization of raw and alkali (NaOH) treated natural fibers from Symphirema involucratum stem.
    Raju JSN; Depoures MV; Kumaran P
    Int J Biol Macromol; 2021 Sep; 186():886-896. PubMed ID: 34271053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraction and characterisation of natural cellulose fibers from Kigelia africana.
    Ilangovan M; Guna V; Prajwal B; Jiang Q; Reddy N
    Carbohydr Polym; 2020 May; 236():115996. PubMed ID: 32172831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of surface-modified natural cellulosic fiber extracted from the root of Ficus religiosa tree.
    A AMM; D R; S R SB; S I; G SP
    Int J Biol Macromol; 2020 Aug; 156():997-1006. PubMed ID: 32330498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of cellulose fibers in Thespesia populnea barks: Influence of alkali treatment.
    Kathirselvam M; Kumaravel A; Arthanarieswaran VP; Saravanakumar SS
    Carbohydr Polym; 2019 Aug; 217():178-189. PubMed ID: 31079675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of magnesium carbonate concentration and lignin presence on properties of natural cellulosic Cissus quadrangularis fiber composites.
    Siva R; Valarmathi TN; Palanikumar K
    Int J Biol Macromol; 2020 Dec; 164():3611-3620. PubMed ID: 32877714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on a Novel natural cellulosic fiber from Kigelia africana fruit: Characterization and analysis.
    Siva R; Valarmathi TN; Palanikumar K; Samrot AV
    Carbohydr Polym; 2020 Sep; 244():116494. PubMed ID: 32536404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment.
    Saha P; Manna S; Chowdhury SR; Sen R; Roy D; Adhikari B
    Bioresour Technol; 2010 May; 101(9):3182-7. PubMed ID: 20074944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and properties of cellulose/Thespesia lampas microfiber composite films.
    B A; K OR; Feng H; A VR
    Int J Biol Macromol; 2019 Apr; 127():153-158. PubMed ID: 30639652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.