These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
426 related articles for article (PubMed ID: 30529456)
1. The mammalian mitochondrial epitranscriptome. Rebelo-Guiomar P; Powell CA; Van Haute L; Minczuk M Biochim Biophys Acta Gene Regul Mech; 2019 Mar; 1862(3):429-446. PubMed ID: 30529456 [TBL] [Abstract][Full Text] [Related]
2. Readers of the m Berlivet S; Scutenaire J; Deragon JM; Bousquet-Antonelli C Biochim Biophys Acta Gene Regul Mech; 2019 Mar; 1862(3):329-342. PubMed ID: 30660758 [TBL] [Abstract][Full Text] [Related]
3. Post-transcriptional pseudouridylation in mRNA as well as in some major types of noncoding RNAs. Adachi H; De Zoysa MD; Yu YT Biochim Biophys Acta Gene Regul Mech; 2019 Mar; 1862(3):230-239. PubMed ID: 30414851 [TBL] [Abstract][Full Text] [Related]
4. m6A modification of non-coding RNA and the control of mammalian gene expression. Coker H; Wei G; Brockdorff N Biochim Biophys Acta Gene Regul Mech; 2019 Mar; 1862(3):310-318. PubMed ID: 30550772 [TBL] [Abstract][Full Text] [Related]
6. The emerging impact of tRNA modifications in the brain and nervous system. Ramos J; Fu D Biochim Biophys Acta Gene Regul Mech; 2019 Mar; 1862(3):412-428. PubMed ID: 30529455 [TBL] [Abstract][Full Text] [Related]
7. Steering pluripotency and differentiation with N Malla S; Melguizo-Sanchis D; Aguilo F Biochim Biophys Acta Gene Regul Mech; 2019 Mar; 1862(3):394-402. PubMed ID: 30412796 [TBL] [Abstract][Full Text] [Related]
8. Distinguishing RNA modifications from noise in epitranscriptome maps. Grozhik AV; Jaffrey SR Nat Chem Biol; 2018 Feb; 14(3):215-225. PubMed ID: 29443978 [TBL] [Abstract][Full Text] [Related]
9. The adaptive potential of RNA editing-mediated miRNA-retargeting in cancer. Tassinari V; Cesarini V; Silvestris DA; Gallo A Biochim Biophys Acta Gene Regul Mech; 2019 Mar; 1862(3):291-300. PubMed ID: 30605729 [TBL] [Abstract][Full Text] [Related]
10. The role of RNA adenosine demethylases in the control of gene expression. Rajecka V; Skalicky T; Vanacova S Biochim Biophys Acta Gene Regul Mech; 2019 Mar; 1862(3):343-355. PubMed ID: 30550773 [TBL] [Abstract][Full Text] [Related]
11. Cracking the epitranscriptome. Schwartz S RNA; 2016 Feb; 22(2):169-74. PubMed ID: 26787305 [TBL] [Abstract][Full Text] [Related]
12. The mitochondrial epitranscriptome: the roles of RNA modifications in mitochondrial translation and human disease. Bohnsack MT; Sloan KE Cell Mol Life Sci; 2018 Jan; 75(2):241-260. PubMed ID: 28752201 [TBL] [Abstract][Full Text] [Related]
13. Shaping the Bacterial Epitranscriptome-5'-Terminal and Internal RNA Modifications. Schauerte M; Pozhydaieva N; Höfer K Adv Biol (Weinh); 2021 Aug; 5(8):e2100834. PubMed ID: 34121369 [TBL] [Abstract][Full Text] [Related]
15. How Far Can Mitochondrial DNA Drive the Disease? Sun H; Shi W; Wang X Adv Exp Med Biol; 2017; 1038():1-8. PubMed ID: 29178065 [TBL] [Abstract][Full Text] [Related]
16. Characterizing 5-methylcytosine in the mammalian epitranscriptome. Hussain S; Aleksic J; Blanco S; Dietmann S; Frye M Genome Biol; 2013 Nov; 14(11):215. PubMed ID: 24286375 [TBL] [Abstract][Full Text] [Related]
17. Detection of 5-formylcytosine in Mitochondrial Transcriptome. Van Haute L; Minczuk M Methods Mol Biol; 2021; 2192():59-68. PubMed ID: 33230765 [TBL] [Abstract][Full Text] [Related]