These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 30529474)
1. Response surface statistical optimization of bacterial nanocellulose fermentation in static culture using a low-cost medium. Rodrigues AC; Fontão AI; Coelho A; Leal M; Soares da Silva FAG; Wan Y; Dourado F; Gama M N Biotechnol; 2019 Mar; 49():19-27. PubMed ID: 30529474 [TBL] [Abstract][Full Text] [Related]
2. Optimization of bacterial nanocellulose fermentation using recycled paper sludge and development of novel composites. Soares da Silva FAG; Fernandes M; Souto AP; Ferreira EC; Dourado F; Gama M Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):9143-9154. PubMed ID: 31650194 [TBL] [Abstract][Full Text] [Related]
3. Bacterial nanocellulose production and application: a 10-year overview. Jozala AF; de Lencastre-Novaes LC; Lopes AM; de Carvalho Santos-Ebinuma V; Mazzola PG; Pessoa A; Grotto D; Gerenutti M; Chaud MV Appl Microbiol Biotechnol; 2016 Mar; 100(5):2063-72. PubMed ID: 26743657 [TBL] [Abstract][Full Text] [Related]
4. Bacterial nanocellulose by static, static intermittent fed-batch and rotary disc bioreactor-based fermentation routes using economical black tea broth medium: A comparative account. Sharma C; Bhardwaj NK; Pathak P; Dey P; Gautam S; Kumar S; Dutt Purohit S Int J Biol Macromol; 2024 Oct; 277(Pt 2):134228. PubMed ID: 39074706 [TBL] [Abstract][Full Text] [Related]
5. Performance of nanocellulose-producing bacterial strains in static and agitated cultures with different starting pH. Chen G; Wu G; Chen L; Wang W; Hong FF; Jönsson LJ Carbohydr Polym; 2019 Jul; 215():280-288. PubMed ID: 30981355 [TBL] [Abstract][Full Text] [Related]
6. Enhanced ultrafine nanofibril biosynthesis of bacterial nanocellulose using a low-cost material by the adapted strain of Komagataeibacter xylinus MSKU 12. Naloka K; Matsushita K; Theeragool G Int J Biol Macromol; 2020 May; 150():1113-1120. PubMed ID: 31739023 [TBL] [Abstract][Full Text] [Related]
7. Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Cakar F; Ozer I; Aytekin AÖ; Sahin F Carbohydr Polym; 2014 Jun; 106():7-13. PubMed ID: 24721044 [TBL] [Abstract][Full Text] [Related]
8. Bacterial nanocellulose: A versatile biopolymer production using a cost-effective wooden disc based rotary reactor. Jagtap A; Dastager SG Biopolymers; 2024 Jul; 115(4):e23577. PubMed ID: 38526043 [TBL] [Abstract][Full Text] [Related]
9. Cellulosic Nanomaterial Production Via Fermentation by Park MS; Jung YH; Oh SY; Kim MJ; Bang WY; Lim YW J Microbiol Biotechnol; 2019 Apr; 29(4):617-624. PubMed ID: 30856704 [TBL] [Abstract][Full Text] [Related]
10. Study and valorisation of wastewaters generated in the production of bacterial nanocellulose. da Silva FAGS; Oliveira JV; Felgueiras C; Dourado F; Gama M; Alves MM Biodegradation; 2020 Apr; 31(1-2):47-56. PubMed ID: 32193751 [TBL] [Abstract][Full Text] [Related]
11. Production and characterization of cellulose by Acetobacter sp. V6 using a cost-effective molasses-corn steep liquor medium. Jung HI; Lee OM; Jeong JH; Jeon YD; Park KH; Kim HS; An WG; Son HJ Appl Biochem Biotechnol; 2010 Sep; 162(2):486-97. PubMed ID: 19730823 [TBL] [Abstract][Full Text] [Related]
12. Bacterial nanocellulose: Present status, biomedical applications and future perspectives. Sharma C; Bhardwaj NK Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109963. PubMed ID: 31499992 [TBL] [Abstract][Full Text] [Related]
13. Economical Optimization of Industrial Medium Culture for Bacterial Cellulose Production. Rouhi M; Khanchezar S; Babaeipour V Appl Biochem Biotechnol; 2023 May; 195(5):2863-2881. PubMed ID: 36435897 [TBL] [Abstract][Full Text] [Related]
14. Biotransformation of fermented black tea into bacterial nanocellulose via symbiotic interplay of microorganisms. Sharma C; Bhardwaj NK Int J Biol Macromol; 2019 Jul; 132():166-177. PubMed ID: 30928367 [TBL] [Abstract][Full Text] [Related]
15. Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Abol-Fotouh D; Hassan MA; Shokry H; Roig A; Azab MS; Kashyout AEB Sci Rep; 2020 Feb; 10(1):3491. PubMed ID: 32103077 [TBL] [Abstract][Full Text] [Related]
16. Valorization of fruit processing waste to produce high value-added bacterial nanocellulose by a novel strain Komagataeibacter xylinus IITR DKH20. Khan H; Saroha V; Raghuvanshi S; Bharti AK; Dutt D Carbohydr Polym; 2021 May; 260():117807. PubMed ID: 33712153 [TBL] [Abstract][Full Text] [Related]
17. Effect of addition of γ-poly glutamic acid on bacterial nanocellulose production under agitated culture conditions. Bai Y; Tan R; Yan Y; Chen T; Feng Y; Sun Q; Li J; Wang Y; Liu F; Wang J; Zhang Y; Cheng X; Wu G Biotechnol Biofuels Bioprod; 2024 May; 17(1):68. PubMed ID: 38802837 [TBL] [Abstract][Full Text] [Related]
18. Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs. Pereira FB; Guimarães PM; Teixeira JA; Domingues L Bioresour Technol; 2010 Oct; 101(20):7856-63. PubMed ID: 20627715 [TBL] [Abstract][Full Text] [Related]
19. Citrate-buffered Yamanaka medium allows to produce high-yield bacterial nanocellulose in static culture using Núñez D; Oyarzún P; Cáceres R; Elgueta E; Gamboa M Front Bioeng Biotechnol; 2024; 12():1375984. PubMed ID: 38812914 [TBL] [Abstract][Full Text] [Related]
20. Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions. Jeremic S; Djokic L; Ajdačić V; Božinović N; Pavlovic V; Manojlović DD; Babu R; Senthamaraikannan R; Rojas O; Opsenica I; Nikodinovic-Runic J Int J Biol Macromol; 2019 May; 129():351-360. PubMed ID: 30710586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]