These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 30529569)

  • 1. Forces and moments in cervical spinal column segments in frontal impacts using finite element modeling and human cadaver tests.
    Meyer F; Humm J; Purushothaman Y; Willinger R; Pintar FA; Yoganandan N
    J Mech Behav Biomed Mater; 2019 Feb; 90():681-688. PubMed ID: 30529569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neck Vertebral Level-specific Forces and Moments Under G-x Accelerative Loading.
    Purushothaman Y; Humm J; Jebaseelan D; Yoganandan N
    Mil Med; 2021 Jan; 186(Suppl 1):625-631. PubMed ID: 33499473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of age and injury mechanism on cervical spine injury tolerance from head contact loading.
    Yoganandan N; Chirvi S; Voo L; Pintar FA; Banerjee A
    Traffic Inj Prev; 2018 Feb; 19(2):165-172. PubMed ID: 28738168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normalized vertebral-level specific range of motion corridors for female spines in rear impact.
    Yoganandan N; Purushothaman Y; Humm J
    Traffic Inj Prev; 2021; 22(sup1):S137-S140. PubMed ID: 34699297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lower cervical spine loading in frontal sled tests using inverse dynamics: potential applications for lower neck injury criteria.
    Pintar FA; Yoganandan N; Maiman DJ
    Stapp Car Crash J; 2010 Nov; 54():133-66. PubMed ID: 21512907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a detailed human neck finite element model and injury risk curves under lateral impact.
    Meyer F; Humm J; Yoganandan N; Leszczynski A; Bourdet N; Deck C; Willinger R
    J Mech Behav Biomed Mater; 2021 Apr; 116():104318. PubMed ID: 33516127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internal loads in the cervical spine during motor vehicle rear-end impacts: the effect of acceleration and head-to-head restraint proximity.
    Tencer AF; Mirza S; Bensel K
    Spine (Phila Pa 1976); 2002 Jan; 27(1):34-42. PubMed ID: 11805633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of the head-neck complex in low-speed rear impact.
    Stemper BD; Yoganandan N; Pintar FA
    Biomed Sci Instrum; 2003; 39():245-50. PubMed ID: 12724902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element analysis of the cervical spine: a material property sensitivity study.
    Kumaresan S; Yoganandan N; Pintar FA
    Clin Biomech (Bristol, Avon); 1999 Jan; 14(1):41-53. PubMed ID: 10619089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics.
    Brolin K; Halldin P
    Spine (Phila Pa 1976); 2004 Feb; 29(4):376-85. PubMed ID: 15094533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateral neck injury assessments in side impact using post mortem human subject tests.
    Yoganandan N; Humm J; Pintar FA; Wolfla CE; Maiman DJ
    Ann Adv Automot Med; 2011; 55():169-79. PubMed ID: 22105394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of complex neck loads to human spine at the occipital condyle joint: Implications for nonstandard postures for automated vehicles.
    Humm J; Yoganandan N; Meyer F; Willinger R
    Traffic Inj Prev; 2021; 22(sup1):S177-S179. PubMed ID: 34714703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Load-sharing in the lumbosacral spine in neutral standing & flexed postures - A combined finite element and inverse static study.
    Liu T; Khalaf K; Naserkhaki S; El-Rich M
    J Biomech; 2018 Mar; 70():43-50. PubMed ID: 29153706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inertial loading of the human cervical spine.
    Yoganandan N; Pintar FA
    J Biomech Eng; 1997 Aug; 119(3):237-40. PubMed ID: 9285335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of the cervical spine in pediatric and adult volunteers during low speed frontal impacts.
    Seacrist T; Arbogast KB; Maltese MR; García-Espaňa JF; Lopez-Valdes FJ; Kent RW; Tanji H; Higuchi K; Balasubramanian S
    J Biomech; 2012 Jan; 45(1):99-106. PubMed ID: 22056197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of cervical spine injury and coupling response with initial head rotated posture - implications for AIS coding.
    Yoganandan N; Baisden J; Humm J; Varghese V
    Traffic Inj Prev; 2022; 23(sup1):S195-S198. PubMed ID: 36215262
    [No Abstract]   [Full Text] [Related]  

  • 17. Nonlinear finite-element analysis of the lower cervical spine (C4-C6) under axial loading.
    Ng HW; Teo EC
    J Spinal Disord; 2001 Jun; 14(3):201-10. PubMed ID: 11389369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neck muscle load distribution in lateral, frontal, and rear-end impacts: a three-dimensional finite element analysis.
    Hedenstierna S; Halldin P; Siegmund GP
    Spine (Phila Pa 1976); 2009 Nov; 34(24):2626-33. PubMed ID: 19910765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of acceleration level on lumbar spine injuries in military populations.
    Yoganandan N; Stemper BD; Baisden JL; Pintar FA; Paskoff GR; Shender BS
    Spine J; 2015 Jun; 15(6):1318-24. PubMed ID: 24374098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Out-of-Position Rear Impact Tissue-Level Investigation Using Detailed Finite Element Neck Model.
    Shateri H; Cronin DS
    Traffic Inj Prev; 2015; 16(7):698-708. PubMed ID: 25664486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.