BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30529840)

  • 1. Phytotoxicity of wear debris from traditional and innovative brake pads.
    Maiorana S; Teoldi F; Silvani S; Mancini A; Sanguineti A; Mariani F; Cella C; Lopez A; Potenza MAC; Lodi M; Dupin D; Sanvito T; Bonfanti A; Benfenati E; Baderna D
    Environ Int; 2019 Feb; 123():156-163. PubMed ID: 30529840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alteration of root growth by lettuce, wheat, and soybean in response to wear debris from automotive brake pads.
    Dodd MD; Ebbs SD; Gibson DJ; Filip P
    Arch Environ Contam Toxicol; 2014 Nov; 67(4):557-64. PubMed ID: 24957180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alteration of Hordeum vulgare and Sinapis alba germination and early growth in response to airborne low-metallic automotive brake wear debris.
    Rajhelová H; Peikertová P; Kuzníková Ľ; Motyka O; Plachá D; Mamulová Kutláková K; Čech Barabaszová K; Thomasová B; Vaculík M; Kukutschová J
    Chemosphere; 2023 Dec; 345():140540. PubMed ID: 37890799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity and mutagenicity of low-metallic automotive brake pad materials.
    Malachova K; Kukutschova J; Rybkova Z; Sezimova H; Placha D; Cabanova K; Filip P
    Ecotoxicol Environ Saf; 2016 Sep; 131():37-44. PubMed ID: 27179608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissolution of copper and iron from automotive brake pad wear debris enhances growth and accumulation by the invasive macrophyte Salvinia molesta Mitchell.
    Shupert LA; Ebbs SD; Lawrence J; Gibson DJ; Filip P
    Chemosphere; 2013 Jun; 92(1):45-51. PubMed ID: 23582708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytotoxic, phytotoxic, and mutagenic appraisal to ascertain toxicological potential of particulate matter emitted from automobiles.
    Anwar K; Ejaz S; Ashraf M; Altaf I; Anjum AA
    Environ Sci Pollut Res Int; 2013 Jul; 20(7):4817-30. PubMed ID: 23296974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper-dependent biological effects of particulate matter produced by brake systems on lung alveolar cells.
    Figliuzzi M; Tironi M; Longaretti L; Mancini A; Teoldi F; Sangalli F; Remuzzi A
    Arch Toxicol; 2020 Sep; 94(9):2965-2979. PubMed ID: 32577786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Present knowledge and perspectives on the role of copper in brake materials and related environmental issues: A critical assessment.
    Straffelini G; Ciudin R; Ciotti A; Gialanella S
    Environ Pollut; 2015 Dec; 207():211-9. PubMed ID: 26408966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity of organotrophic bacteria, activity of dehydrogenases and urease as well as seed germination and root growth Lepidium sativum, Sorghum saccharatum and Sinapis alba under the influence of polycyclic aromatic hydrocarbons.
    Lipińska A; Wyszkowska J; Kucharski J
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18519-30. PubMed ID: 26341339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecotoxicological effects of atmospheric particulate produced by braking systems on aquatic and edaphic organisms.
    Volta A; Sforzini S; Camurati C; Teoldi F; Maiorana S; Croce A; Benfenati E; Perricone G; Lodi M; Viarengo A
    Environ Int; 2020 Apr; 137():105564. PubMed ID: 32086078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airway contraction and cytokine release in isolated rat lungs induced by wear particles from the road and tire interface and road vehicle brakes.
    Nosratabadi AR; Gustafsson M; Lovén K; Ljunggren SA; Olofsson U; Abbasi S; Blomqvist G; Karlsson H; Ljungman AG; Cassee FR; Gerlofs-Nijland ME; Gudmundsson A
    Inhal Toxicol; 2023 Dec; 35(13-14):309-323. PubMed ID: 38054445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automotive airborne brake wear debris nanoparticles and cytokinesis-block micronucleus assay in peripheral blood lymphocytes: A pilot study.
    Kazimirova A; Peikertova P; Barancokova M; Staruchova M; Tulinska J; Vaculik M; Vavra I; Kukutschova J; Filip P; Dusinska M
    Environ Res; 2016 Jul; 148():443-449. PubMed ID: 27131798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological response of an in vitro human 3D lung cell model exposed to brake wear debris varies based on brake pad formulation.
    Barosova H; Chortarea S; Peikertova P; Clift MJD; Petri-Fink A; Kukutschova J; Rothen-Rutishauser B
    Arch Toxicol; 2018 Jul; 92(7):2339-2351. PubMed ID: 29748788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of phenolic herbicide toxicity and mode of action by different assays.
    Bettiol C; De Vettori S; Minervini G; Zuccon E; Marchetto D; Ghirardini AV; Argese E
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7398-408. PubMed ID: 26695414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Land spreading of olive mill wastewater: effects on soil microbial activity and potential phytotoxicity.
    Saadi I; Laor Y; Raviv M; Medina S
    Chemosphere; 2007 Jan; 66(1):75-83. PubMed ID: 16814841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum.
    Bosker T; Bouwman LJ; Brun NR; Behrens P; Vijver MG
    Chemosphere; 2019 Jul; 226():774-781. PubMed ID: 30965248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suitability of the OCDE tests to estimate contamination with 2,4-dichlorophenol of soils from Galicia (NW Spain).
    Moscoso F; Bouzas S; Gil-Sotres F; Leirós MA; Trasar-Cepeda C
    Sci Total Environ; 2007 May; 378(1-2):58-62. PubMed ID: 17306860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Optically Active Ethyl 2-Phthalimidooxypropionate on the Growth of Cress, Lepidium sativum.
    Takekida Y; Okazaki M; Shuto Y
    Biosci Biotechnol Biochem; 1999; 63(10):1831-3. PubMed ID: 26300175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of methods for collecting fallout brake pad wear debris for environmental analysis.
    Sondhi A; Imhoff PT; Dentel SK; Allen HE
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(2):239-49. PubMed ID: 20390864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytotoxicity of low-weight carboxylic acids.
    Himanen M; Prochazka P; Hänninen K; Oikari A
    Chemosphere; 2012 Jul; 88(4):426-31. PubMed ID: 22440635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.