BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30529914)

  • 1. Immobilized bacterial biosensor for rapid and effective monitoring of acute toxicity in water.
    Wasito H; Fatoni A; Hermawan D; Susilowati SS
    Ecotoxicol Environ Saf; 2019 Apr; 170():205-209. PubMed ID: 30529914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel colorimetric biosensor for monitoring and detecting acute toxicity in water.
    Zhai J; Yong D; Li J; Dong S
    Analyst; 2013 Jan; 138(2):702-7. PubMed ID: 23187797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioluminescent bioreporter pad biosensor for monitoring water toxicity.
    Axelrod T; Eltzov E; Marks RS
    Talanta; 2016; 149():290-297. PubMed ID: 26717844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast fabrication of reusable polyethersulfone microbial biosensors through biocompatible phase separation.
    Vigués N; Pujol-Vila F; Macanás J; Muñoz M; Muñoz-Berbel X; Mas J
    Talanta; 2020 Jan; 206():120192. PubMed ID: 31514850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting total toxicity in water using a mediated biosensor system with flow injection.
    Yong D; Liu C; Zhu C; Yu D; Liu L; Zhai J; Dong S
    Chemosphere; 2015 Nov; 139():109-16. PubMed ID: 26071865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of immobilized biophotonic beads consisting of Photobacterium leiognathi for the detection of heavy metals and pesticide.
    Ranjan R; Rastogi NK; Thakur MS
    J Hazard Mater; 2012 Jul; 225-226():114-23. PubMed ID: 22626628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dip-stick type biosensor using bioluminescent bacteria encapsulated in color-coded alginate microbeads for detection of water toxicity.
    Jung I; Seo HB; Lee JE; Kim BC; Gu MB
    Analyst; 2014 Sep; 139(18):4696-701. PubMed ID: 25057512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor.
    Affi M; Solliec C; Legentilhomme P; Comiti J; Legrand J; Jouanneau S; Thouand G
    Anal Bioanal Chem; 2016 Dec; 408(30):8761-8770. PubMed ID: 27040532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fabrication and the use of immobilized cells as test organisms in a ferricyanide-based toxicity biosensor.
    Liu C; Xu Y; Han X; Chang X
    Environ Toxicol Chem; 2018 Feb; 37(2):329-335. PubMed ID: 28840945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous removal of phenol, Cu and Cd from water with corn cob silica-alginate beads.
    Shim J; Lim JM; Shea PJ; Oh BT
    J Hazard Mater; 2014 May; 272():129-36. PubMed ID: 24685529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Sensitive Luminescent Bioassay Using Recombinant
    Wang GH; Cheng CY; Tsai TH; Chiang PK; Chung YC
    Biosensors (Basel); 2021 Sep; 11(10):. PubMed ID: 34677313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amperometric determination of cadmium, lead, and mercury metal ions using a novel polymer immobilised horseradish peroxidase biosensor system.
    Silwana B; Van Der Horst C; Iwuoha E; Somerset V
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(13):1501-11. PubMed ID: 25137538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volatilization of mercury by immobilized bacteria (Klebsiella pneumoniae) in different support by using fluidized bed bioreactor.
    Zeroual Y; Moutaouakkil A; Blaghen M
    Curr Microbiol; 2001 Nov; 43(5):322-7. PubMed ID: 11688795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smartphone-Based Whole-Cell Biosensor Platform Utilizing an Immobilization Approach on a Filter Membrane Disk for the Monitoring of Water Toxicants.
    Ma J; Harpaz D; Liu Y; Eltzov E
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Acute toxicity analysis performance of CellSense biosensor with E. coli].
    Wang XJ; Wang H; Zhao JF; Xia SQ; Zhao HN
    Huan Jing Ke Xue; 2009 Apr; 30(4):1210-4. PubMed ID: 19545031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part II: technical development and proof of concept of the biosensor.
    Charrier T; Chapeau C; Bendria L; Picart P; Daniel P; Thouand G
    Anal Bioanal Chem; 2011 May; 400(4):1061-70. PubMed ID: 21061000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research of a bioluminent bacterial-based optical fiber sensor to detecting acute effects of pollutants in water].
    Yu H; He M; Cai Q; Zhang LB
    Huan Jing Ke Xue; 2008 Feb; 29(2):375-9. PubMed ID: 18613508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid detection of heavy metal-induced toxicity in water using a fed-batch sulfur-oxidizing bacteria (SOB) bioreactor.
    Eom H; Hwang JH; Hassan SHA; Joo JH; Hur JH; Chon K; Jeon BH; Song YC; Chae KJ; Oh SE
    J Microbiol Methods; 2019 Jun; 161():35-42. PubMed ID: 30978364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Miniaturized bacterial biosensor system for arsenic detection holds great promise for making integrated measurement device.
    Buffi N; Merulla D; Beutier J; Barbaud F; Beggah S; van Lintel H; Renaud P; van der Meer JR
    Bioeng Bugs; 2011; 2(5):296-8. PubMed ID: 22008638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact portable biosensor for arsenic detection in aqueous samples with Escherichia coli bioreporter cells.
    Truffer F; Buffi N; Merulla D; Beggah S; van Lintel H; Renaud P; van der Meer JR; Geiser M
    Rev Sci Instrum; 2014 Jan; 85(1):015120. PubMed ID: 24517825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.