These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30529931)

  • 61. Tetrandrine reverses drug resistance in isoniazid and ethambutol dual drug-resistant Mycobacterium tuberculosis clinical isolates.
    Zhang Z; Yan J; Xu K; Ji Z; Li L
    BMC Infect Dis; 2015 Mar; 15():153. PubMed ID: 25887373
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Development of ssDNA aptamers as potent inhibitors of Mycobacterium tuberculosis acetohydroxyacid synthase.
    Baig IA; Moon JY; Lee SC; Ryoo SW; Yoon MY
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1338-50. PubMed ID: 25988243
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Synthetic thiosemicarbazones as a new class of Mycobacterium tuberculosis protein tyrosine phosphatase A inhibitors.
    Sens L; de Souza ACA; Pacheco LA; Menegatti ACO; Mori M; Mascarello A; Nunes RJ; Terenzi H
    Bioorg Med Chem; 2018 Nov; 26(21):5742-5750. PubMed ID: 30389409
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Molecular dynamics simulation and binding free energy studies of novel leads belonging to the benzofuran class inhibitors of Mycobacterium tuberculosis Polyketide Synthase 13.
    Cruz JN; Costa JFS; Khayat AS; Kuca K; Barros CAL; Neto AMJC
    J Biomol Struct Dyn; 2019 Apr; 37(6):1616-1627. PubMed ID: 29633908
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Efflux Attenuates the Antibacterial Activity of Q203 in Mycobacterium tuberculosis.
    Jang J; Kim R; Woo M; Jeong J; Park DE; Kim G; Delorme V
    Antimicrob Agents Chemother; 2017 Jul; 61(7):. PubMed ID: 28416541
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Antituberculosis drugs: reducing efflux=increasing activity.
    Rodrigues L; Parish T; Balganesh M; Ainsa JA
    Drug Discov Today; 2017 Mar; 22(3):592-599. PubMed ID: 28089787
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Antimicrobial efflux pumps and Mycobacterium tuberculosis drug tolerance: evolutionary considerations.
    Szumowski JD; Adams KN; Edelstein PH; Ramakrishnan L
    Curr Top Microbiol Immunol; 2013; 374():81-108. PubMed ID: 23242857
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Small Molecule Efflux Pump Inhibitors in Mycobacterium tuberculosis: A Rational Drug Design Perspective.
    Kapp E; Malan SF; Joubert J; Sampson SL
    Mini Rev Med Chem; 2018; 18(1):72-86. PubMed ID: 28494730
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [The importance of efflux systems in antibiotic resistance and efflux pump inhibitors in the management of resistance].
    Aygül A
    Mikrobiyol Bul; 2015 Apr; 49(2):278-91. PubMed ID: 26167829
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Identification of Novel Efflux Proteins Rv0191, Rv3756c, Rv3008, and Rv1667c Involved in Pyrazinamide Resistance in Mycobacterium tuberculosis.
    Zhang Y; Zhang J; Cui P; Zhang Y; Zhang W
    Antimicrob Agents Chemother; 2017 Aug; 61(8):. PubMed ID: 28584158
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy.
    Pule CM; Sampson SL; Warren RM; Black PA; van Helden PD; Victor TC; Louw GE
    J Antimicrob Chemother; 2016 Jan; 71(1):17-26. PubMed ID: 26472768
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Drug resistance mechanism of PncA in Mycobacterium tuberculosis.
    Rajendran V; Sethumadhavan R
    J Biomol Struct Dyn; 2014; 32(2):209-21. PubMed ID: 23383724
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Virtual Screening of Small Molecular Inhibitors against DprE1.
    Zhang G; Guo S; Cui H; Qi J
    Molecules; 2018 Feb; 23(3):. PubMed ID: 29495447
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Indole-2-carboxamide-based MmpL3 Inhibitors Show Exceptional Antitubercular Activity in an Animal Model of Tuberculosis Infection.
    Stec J; Onajole OK; Lun S; Guo H; Merenbloom B; Vistoli G; Bishai WR; Kozikowski AP
    J Med Chem; 2016 Jul; 59(13):6232-47. PubMed ID: 27275668
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Reversed isoniazids: Design, synthesis and evaluation against Mycobacterium tuberculosis.
    Kumar M; Singh K; Ngwane AH; Hamzabegovic F; Abate G; Baker B; Wiid I; Hoft DF; Ruminski P; Chibale K
    Bioorg Med Chem; 2018 Feb; 26(4):833-844. PubMed ID: 29373270
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Andrographolide: A potent antituberculosis compound that targets Aminoglycoside 2'-N-acetyltransferase in Mycobacterium tuberculosis.
    Prabu A; Hassan S; Prabuseenivasan ; Shainaba AS; Hanna LE; Kumar V
    J Mol Graph Model; 2015 Sep; 61():133-40. PubMed ID: 26245695
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [The effects of gene mutation related to drug resistance and drug efflux pump in extensively drug-resistant tuberculosis clinical isolates].
    Cui ZL; Wang XL; Wang J; Lu JM; Hu ZY
    Zhonghua Jie He He Hu Xi Za Zhi; 2010 Jul; 33(7):505-9. PubMed ID: 20979796
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mutation of Rv2887, a marR-like gene, confers Mycobacterium tuberculosis resistance to an imidazopyridine-based agent.
    Winglee K; Lun S; Pieroni M; Kozikowski A; Bishai W
    Antimicrob Agents Chemother; 2015 Nov; 59(11):6873-81. PubMed ID: 26303802
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Insights into RpoB clinical mutants in mediating rifampicin resistance in Mycobacterium tuberculosis.
    Nusrath Unissa A; Hassan S; Indira Kumari V; Revathy R; Hanna LE
    J Mol Graph Model; 2016 Jun; 67():20-32. PubMed ID: 27155814
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Development of efflux pump inhibitors in antituberculosis therapy.
    Song L; Wu X
    Int J Antimicrob Agents; 2016 Jun; 47(6):421-9. PubMed ID: 27211826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.