These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 30529965)
1. Projections of water, carbon, and nitrogen dynamics under future climate change in an old-growth Douglas-fir forest in the western Cascade Range using a biogeochemical model. Dong Z; Driscoll CT; Johnson SL; Campbell JL; Pourmokhtarian A; Stoner AMK; Hayhoe K Sci Total Environ; 2019 Mar; 656():608-624. PubMed ID: 30529965 [TBL] [Abstract][Full Text] [Related]
2. Projections of water, carbon, and nitrogen dynamics under future climate change in an alpine tundra ecosystem in the southern Rocky Mountains using a biogeochemical model. Dong Z; Driscoll CT; Campbell JL; Pourmokhtarian A; Stoner AMK; Hayhoe K Sci Total Environ; 2019 Feb; 650(Pt 1):1451-1464. PubMed ID: 30308832 [TBL] [Abstract][Full Text] [Related]
3. Modeled ecohydrological responses to climate change at seven small watersheds in the northeastern United States. Pourmokhtarian A; Driscoll CT; Campbell JL; Hayhoe K; Stoner AM; Adams MB; Burns D; Fernandez I; Mitchell MJ; Shanley JB Glob Chang Biol; 2017 Feb; 23(2):840-856. PubMed ID: 27472269 [TBL] [Abstract][Full Text] [Related]
4. Variation in water potential, hydraulic characteristics and water source use in montane Douglas-fir and lodgepole pine trees in southwestern Alberta and consequences for seasonal changes in photosynthetic capacity. Andrews SF; Flanagan LB; Sharp EJ; Cai T Tree Physiol; 2012 Feb; 32(2):146-60. PubMed ID: 22318220 [TBL] [Abstract][Full Text] [Related]
5. Increased water deficit decreases Douglas fir growth throughout western US forests. Restaino CM; Peterson DL; Littell J Proc Natl Acad Sci U S A; 2016 Aug; 113(34):9557-62. PubMed ID: 27503880 [TBL] [Abstract][Full Text] [Related]
6. Forest restoration treatments have subtle long-term effects on soil C and N cycling in mixed conifer forests. Ganzlin PW; Gundale MJ; Becknell RE; Cleveland CC Ecol Appl; 2016 Jul; 26(5):1503-1516. PubMed ID: 27755759 [TBL] [Abstract][Full Text] [Related]
7. Seasonal patterns of bole water content in old growth Douglas-fir ( Beedlow PA; Waschmann RS; Lee EH; Tingey DT Agric For Meteorol; 2017 Aug; 242():109-119. PubMed ID: 30008496 [TBL] [Abstract][Full Text] [Related]
8. Physiological responses of Douglas-fir to climate and forest disturbances as detected by cellulosic carbon and oxygen isotope ratios. Lee EH; Beedlow PA; Brooks JR; Tingey DT; Wickham C; Rugh W Tree Physiol; 2022 Jan; 42(1):5-25. PubMed ID: 34528693 [TBL] [Abstract][Full Text] [Related]
9. Changes to the N cycle following bark beetle outbreaks in two contrasting conifer forest types. Griffin JM; Turner MG Oecologia; 2012 Oct; 170(2):551-65. PubMed ID: 22492169 [TBL] [Abstract][Full Text] [Related]
10. Long-term effects of climate change on carbon storage and tree species composition in a dry deciduous forest. Fekete I; Lajtha K; Kotroczó Z; Várbíró G; Varga C; Tóth JA; Demeter I; Veperdi G; Berki I Glob Chang Biol; 2017 Aug; 23(8):3154-3168. PubMed ID: 28222248 [TBL] [Abstract][Full Text] [Related]
11. Simulating effects of changing climate and CO(2) emissions on soil carbon pools at the Hubbard Brook experimental forest. Dib AE; Johnson CE; Driscoll CT; Fahey TJ; Hayhoe K Glob Chang Biol; 2014 May; 20(5):1643-56. PubMed ID: 24132912 [TBL] [Abstract][Full Text] [Related]
12. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Vitali V; Büntgen U; Bauhus J Glob Chang Biol; 2017 Dec; 23(12):5108-5119. PubMed ID: 28556403 [TBL] [Abstract][Full Text] [Related]
13. Pinus taeda forest growth predictions in the 21st century vary with site mean annual temperature and site quality. Gonzalez-Benecke CA; Teskey RO; Dinon-Aldridge H; Martin TA Glob Chang Biol; 2017 Nov; 23(11):4689-4705. PubMed ID: 28386943 [TBL] [Abstract][Full Text] [Related]
14. Forest stand productivity derived from site conditions: an assessment of old Douglas-fir stands ( Eckhart T; Pötzelsberger E; Koeck R; Thom D; Lair GJ; van Loo M; Hasenauer H Ann For Sci; 2019; 76(1):19. PubMed ID: 30881192 [TBL] [Abstract][Full Text] [Related]
15. Biogeochemistry of a temperate forest nitrogen gradient. Perakis SS; Sinkhorn ER Ecology; 2011 Jul; 92(7):1481-91. PubMed ID: 21870622 [TBL] [Abstract][Full Text] [Related]
16. Decreased atmospheric nitrogen deposition in eastern North America: Predicted responses of forest ecosystems. Gilliam FS; Burns DA; Driscoll CT; Frey SD; Lovett GM; Watmough SA Environ Pollut; 2019 Jan; 244():560-574. PubMed ID: 30384062 [TBL] [Abstract][Full Text] [Related]
18. Effects of precipitation variability on carbon and water fluxes in the understorey of a nitrogen-limited montado ecosystem. Jongen M; Unger S; Santos Pereira J Oecologia; 2014 Dec; 176(4):1199-212. PubMed ID: 25241297 [TBL] [Abstract][Full Text] [Related]
19. Long-term changes in forest carbon under temperature and nitrogen amendments in a temperate northern hardwood forest. Savage KE; Parton WJ; Davidson EA; Trumbore SE; Frey SD Glob Chang Biol; 2013 Aug; 19(8):2389-400. PubMed ID: 23589498 [TBL] [Abstract][Full Text] [Related]
20. Growth response of Douglas-fir seedlings to nitrogen fertilization: importance of Rubisco activation state and respiration rates. Manter DK; Kavanagh KL; Rose CL Tree Physiol; 2005 Aug; 25(8):1015-21. PubMed ID: 15929932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]