These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30529988)

  • 21. Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting.
    Wu L; Zhu H; Gai X; Wang Y
    J Prosthet Dent; 2014 Jan; 111(1):51-5. PubMed ID: 24161258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fatigue behavior of thin-walled grade 2 titanium samples processed by selective laser melting. Application to life prediction of porous titanium implants.
    Lipinski P; Barbas A; Bonnet AS
    J Mech Behav Biomed Mater; 2013 Dec; 28():274-90. PubMed ID: 24008139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of adding support structures for overhanging part on fatigue strength in selective laser melting.
    Kajima Y; Takaichi A; Nakamoto T; Kimura T; Kittikundecha N; Tsutsumi Y; Nomura N; Kawasaki A; Takahashi H; Hanawa T; Wakabayashi N
    J Mech Behav Biomed Mater; 2018 Feb; 78():1-9. PubMed ID: 29128693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical Behavior of Al-Si10-Mg P-TPMS Structure Fabricated by Selective Laser Melting and a Unified Mathematical Model with Geometrical Parameter.
    Zhang X; Xie X; Li Y; Li B; Yan S; Wen P
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparison of corrosion resistance of cobalt-chromium-molybdenum metal ceramic alloy fabricated with selective laser melting and traditional processing.
    Zeng L; Xiang N; Wei B
    J Prosthet Dent; 2014 Nov; 112(5):1217-24. PubMed ID: 24836284
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique.
    Xin XZ; Chen J; Xiang N; Wei B
    Cell Biochem Biophys; 2013; 67(3):983-90. PubMed ID: 23553145
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications.
    Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X
    J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting.
    Yan C; Hao L; Hussein A; Young P
    J Mech Behav Biomed Mater; 2015 Nov; 51():61-73. PubMed ID: 26210549
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology.
    Chen J; Zhang Z; Chen X; Zhang C; Zhang G; Xu Z
    J Prosthet Dent; 2014 Nov; 112(5):1088-95.e1. PubMed ID: 24939253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A physical model of the extreme mantis shrimp strike: kinematics and cavitation of Ninjabot.
    Cox SM; Schmidt D; Modarres-Sadeghi Y; Patek SN
    Bioinspir Biomim; 2014 Mar; 9(1):016014. PubMed ID: 24503516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical and shape memory properties of porous Ni
    Taheri Andani M; Saedi S; Turabi AS; Karamooz MR; Haberland C; Karaca HE; Elahinia M
    J Mech Behav Biomed Mater; 2017 Apr; 68():224-231. PubMed ID: 28189977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An integrated approach of topology optimized design and selective laser melting process for titanium implants materials.
    Xiao D; Yang Y; Su X; Wang D; Sun J
    Biomed Mater Eng; 2013; 23(5):433-45. PubMed ID: 23988713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A mechanical comparison of the locking compression plate (LCP) and the low contact-dynamic compression plate (DCP) in an osteoporotic bone model.
    Snow M; Thompson G; Turner PG
    J Orthop Trauma; 2008 Feb; 22(2):121-5. PubMed ID: 18349780
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies on the performance of selective laser melting porous dental implant by finite element model simulation, fatigue testing and in vivo experiments.
    Wang Y; Chen X; Zhang C; Feng W; Zhang P; Chen Y; Huang J; Luo Y; Chen J
    Proc Inst Mech Eng H; 2019 Feb; 233(2):170-180. PubMed ID: 30565502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and properties of a personalized bio-fixed implant prepared with selective laser melting.
    Zhang G; Li J; Li J; Zhou X; Wang A
    Comput Methods Biomech Biomed Engin; 2019 Oct; 22(13):1034-1042. PubMed ID: 31304779
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From Telson to Attack in Mantis Shrimp: Bridging Biomechanics and Behavior in Crustacean Contests.
    deVries MS; Lowder KB; Taylor JRA
    Integr Comp Biol; 2021 Sep; 61(2):643-654. PubMed ID: 33974067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Comparison of Biocompatibility of a Titanium Alloy Fabricated by Electron Beam Melting and Selective Laser Melting.
    Wang H; Zhao B; Liu C; Wang C; Tan X; Hu M
    PLoS One; 2016; 11(7):e0158513. PubMed ID: 27391895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental study and numerical simulation on the structural and mechanical properties of Typha leaves through multimodal microscopy approaches.
    Liu J; Zhang Z; Yu Z; Liang Y; Li X; Ren L
    Micron; 2018 Jan; 104():37-44. PubMed ID: 29073496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protective Behaviors of Bio-Inspired Honeycomb Column Thin-Walled Structure against RC Slab under Impact Loading.
    Wang S; Xia H
    Biomimetics (Basel); 2023 Feb; 8(1):. PubMed ID: 36810404
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the mechanical behavior of bio-inspired materials with non-self-similar hierarchy.
    An B; Zhao X; Zhang D
    J Mech Behav Biomed Mater; 2014 Jun; 34():8-17. PubMed ID: 24548949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.