These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30529988)

  • 41. DPSM modeling for studying interaction between bounded ultrasonic beams and corrugated plates with experimental verification.
    Das S; Dao CM; Banerjee S; Kundu T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1860-72. PubMed ID: 17941392
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Defects-tolerant Co-Cr-Mo dental alloys prepared by selective laser melting.
    Qian B; Saeidi K; Kvetková L; Lofaj F; Xiao C; Shen Z
    Dent Mater; 2015 Dec; 31(12):1435-44. PubMed ID: 26452598
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of Scanning Routes on the Stress and Deformation of Overhang Structures Fabricated by SLM.
    Zhang X; Kang J; Rong Y; Wu P; Feng T
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30586881
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A multiscale investigation of mechanical properties of bio-inspired scaffolds.
    Gu Y; Yasodharababu M; Nair AK
    Comput Methods Biomech Biomed Engin; 2018 Oct; 21(13):703-711. PubMed ID: 30369251
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Comparison of surface characteristics and cytocompatibility of Ti-6Al-4V alloy fabricated with select laser melting and electron beam melting].
    Zhao BJ; Wang H; Yan RZ; Wang C; Li RX; Hu M
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 Dec; 51(12):753-757. PubMed ID: 27978917
    [No Abstract]   [Full Text] [Related]  

  • 46. The mechanical behavior of locking compression plates compared with dynamic compression plates in a cadaver radius model.
    Gardner MJ; Brophy RH; Campbell D; Mahajan A; Wright TM; Helfet DL; Lorich DG
    J Orthop Trauma; 2005 Oct; 19(9):597-603. PubMed ID: 16247303
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surface characteristics and corrosion properties of selective laser melted Co-Cr dental alloy after porcelain firing.
    Xin XZ; Chen J; Xiang N; Gong Y; Wei B
    Dent Mater; 2014 Mar; 30(3):263-70. PubMed ID: 24388219
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigation of Compression and Buckling Properties of a Novel Surface-Based Lattice Structure Manufactured Using Multi Jet Fusion Technology.
    Nazir A; Ali M; Jeng JY
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34067583
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vitro and in vivo comparisons of the porous Ti6Al4V alloys fabricated by the selective laser melting technique and a new sintering technique.
    Li J; Li Z; Shi Y; Wang H; Li R; Tu J; Jin G
    J Mech Behav Biomed Mater; 2019 Mar; 91():149-158. PubMed ID: 30579112
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants.
    Han C; Li Y; Wang Q; Wen S; Wei Q; Yan C; Hao L; Liu J; Shi Y
    J Mech Behav Biomed Mater; 2018 Apr; 80():119-127. PubMed ID: 29414467
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology.
    Tsukanaka M; Fujibayashi S; Takemoto M; Matsushita T; Kokubo T; Nakamura T; Sasaki K; Matsuda S
    Dent Mater J; 2016; 35(1):118-25. PubMed ID: 26830832
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Further Analysis on Ti6Al4V Lattice Structures Manufactured by Selective Laser Melting.
    Maietta S; Gloria A; Improta G; Richetta M; De Santis R; Martorelli M
    J Healthc Eng; 2019; 2019():3212594. PubMed ID: 31662833
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biomechanical Comparison of Locking Compression Plate and Limited Contact Dynamic Compression Plate Combined with an Intramedullary Rod in a Canine Femoral Fracture-Gap Model.
    Matres-Lorenzo L; Diop A; Maurel N; Boucton MC; Bernard F; Bernardé A
    Vet Surg; 2016 Apr; 45(3):319-26. PubMed ID: 26909507
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Shape memory response of porous NiTi shape memory alloys fabricated by selective laser melting.
    Saedi S; Saghaian SE; Jahadakbar A; Shayesteh Moghaddam N; Taheri Andani M; Saghaian SM; Lu YC; Elahinia M; Karaca HE
    J Mater Sci Mater Med; 2018 Mar; 29(4):40. PubMed ID: 29564560
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plastic Crushing Failure of Bio-Inspired Cellular Hierarchical Topological Sandwich Core.
    Zhang Y; Lin Y; Li X
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501130
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Research on the Thermal Behaviour of a Selectively Laser Melted Aluminium Alloy: Simulation and Experiment.
    Li Z; Li BQ; Bai P; Liu B; Wang Y
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29987242
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design comparison.
    Speirs M; Van Hooreweder B; Van Humbeeck J; Kruth JP
    J Mech Behav Biomed Mater; 2017 Jun; 70():53-59. PubMed ID: 28162939
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modeling of material orientation effects on AHSS crush and fracture behavior in axial crush tests.
    Chen G; Link TM; Shi MF; Tyan T
    Traffic Inj Prev; 2013; 14 Suppl():S23-9. PubMed ID: 23906382
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bond strengths of porcelain to cobalt-chromium alloys made by casting, milling, and selective laser melting.
    Li J; Chen C; Liao J; Liu L; Ye X; Lin S; Ye J
    J Prosthet Dent; 2017 Jul; 118(1):69-75. PubMed ID: 27927283
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanical testing of 3.5 mm locking and non-locking bone plates.
    DeTora M; Kraus K
    Vet Comp Orthop Traumatol; 2008; 21(4):318-22. PubMed ID: 18704237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.