These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30530327)

  • 1. Considerations for Choosing Sensitive Element Size for Needle and Fiber-Optic Hydrophones-Part II: Experimental Validation of Spatial Averaging Model.
    Wear KA; Liu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):340-347. PubMed ID: 30530327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Considerations for Choosing Sensitive Element Size for Needle and Fiber-Optic Hydrophones-Part I: Spatiotemporal Transfer Function and Graphical Guide.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):318-339. PubMed ID: 30530326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correction for Spatial Averaging Artifacts in Hydrophone Measurements of High-Intensity Therapeutic Ultrasound: An Inverse Filter Approach.
    Wear KA; Howard SM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Sep; 66(9):1453-1464. PubMed ID: 31247548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nominal Versus Actual Spatial Resolution: Comparison of Directivity and Frequency-Dependent Effective Sensitive Element Size for Membrane, Needle, Capsule, and Fiber-Optic Hydrophones.
    Wear KA; Shah A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Feb; 70(2):112-119. PubMed ID: 36178990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal Deconvolution of Hydrophone Response for Linear and Nonlinear Beams-Part II: Experimental Validation.
    Wear KA; Shah A; Baker C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1257-1267. PubMed ID: 35143394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal Deconvolution of Hydrophone Response for Linear and Nonlinear Beams-Part I: Theory, Spatial-Averaging Correction Formulas, and Criteria for Sensitive Element Size.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1243-1256. PubMed ID: 35133964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction for Hydrophone Spatial Averaging Artifacts for Circular Sources.
    Wear KA; Shah A; Baker C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2674-2691. PubMed ID: 32746206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure Pulse Distortion by Needle and Fiber-Optic Hydrophones due to Nonuniform Sensitivity.
    Wear KA; Liu Y; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Feb; 65(2):137-148. PubMed ID: 29389648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophone Spatial Averaging Correction for Acoustic Exposure Measurements From Arrays-Part I: Theory and Impact on Diagnostic Safety Indexes.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Mar; 68(3):358-375. PubMed ID: 33186102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directivity and Frequency-Dependent Effective Sensitive Element Size of Membrane Hydrophones: Theory Versus Experiment.
    Wear KA; Baker C; Miloro P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Nov; 66(11):1723-1730. PubMed ID: 31352340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the repeatability and reproducibility of hydrophone measurements of medical ultrasound fields.
    Martin E; Treeby B
    J Acoust Soc Am; 2019 Mar; 145(3):1270. PubMed ID: 31067926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directivity and Frequency-Dependent Effective Sensitive Element Size of Needle Hydrophones: Predictions From Four Theoretical Forms Compared With Measurements.
    Wear KA; Baker C; Miloro P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Oct; 65(10):1781-1788. PubMed ID: 30010557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation of High-Intensity Therapeutic Ultrasound (HITU) Pressure Field Characterization: Effects of Hydrophone Choice, Nonlinearity, Spatial Averaging and Complex Deconvolution.
    Liu Y; Wear KA; Harris GR
    Ultrasound Med Biol; 2017 Oct; 43(10):2329-2342. PubMed ID: 28735734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophone Spatial Averaging Correction for Acoustic Exposure Measurements From Arrays-Part II: Validation for ARFI and Pulsed Doppler Waveforms.
    Wear KA; Shah A; Ivory AM; Baker C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Mar; 68(3):376-388. PubMed ID: 33186103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophone Spatial Averaging Artifacts for ARFI Beams from Array Transducers.
    Wear K; Shah A; Ivory AM; Baker C
    IEEE Int Ultrason Symp; 2020; NA():1-4. PubMed ID: 35733623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of a fibre-optic hydrophone in measuring acoustic parameters of high power hyperthermia transducers.
    Chan HL; Chiang KS; Price DC; Gardner JL; Brinch J
    Phys Med Biol; 1989 Nov; 34(11):1609-22. PubMed ID: 2587628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved measurement of acoustic output using complex deconvolution of hydrophone sensitivity.
    Wear KA; Gammell PM; Maruvada S; Liu Y; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):62-75. PubMed ID: 24402896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure.
    Morris P; Hurrell A; Shaw A; Zhang E; Beard P
    J Acoust Soc Am; 2009 Jun; 125(6):3611-22. PubMed ID: 19507943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1-60 MHz measurements in focused acoustic fields using spatial averaging corrections.
    Radulescu EG; Lewin PA; Nowicki A
    Ultrasonics; 2002 May; 40(1-8):497-501. PubMed ID: 12159990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calibration of ultrasonic hydrophone probes up to 100 MHz using time gating frequency analysis and finite amplitude waves.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A
    Ultrasonics; 2003 Jun; 41(4):247-54. PubMed ID: 12782255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.