These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30530335)

  • 1. Hardware-Software Codesign Based Accelerated and Reconfigurable Methodology for String Matching in Computational Bioinformatics Applications.
    Gudur VY; Acharyya A
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1198-1210. PubMed ID: 30530335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconfigurable hardware-software codesign methodology for protein identification.
    Gudur VY; Thallada S; Deevi AR; Gande VK; Acharyya A; Bhandari V; Sharma P; Khursheed S; Naik GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2456-2459. PubMed ID: 28268821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hardware-Algorithm Codesign for Fast and Energy Efficient Approximate String Matching on FPGA for Computational Biology.
    Gudur VY; Maheshwari S; Bhardwaj S; Acharyya A; Shafik R
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():87-90. PubMed ID: 36086088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconfigurable systems for sequence alignment and for general dynamic programming.
    Jacobi RP; Ayala-Rincón M; Carvalho LG; Llanos CH; Hartenstein RW
    Genet Mol Res; 2005 Sep; 4(3):543-52. PubMed ID: 16342039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. libFLASM: a software library for fixed-length approximate string matching.
    Ayad LA; Pissis SP; Retha A
    BMC Bioinformatics; 2016 Nov; 17(1):454. PubMed ID: 27832739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerating string set matching in FPGA hardware for bioinformatics research.
    Dandass YS; Burgess SC; Lawrence M; Bridges SM
    BMC Bioinformatics; 2008 Apr; 9():197. PubMed ID: 18412963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SCA: Search-Based Computing Hardware Architecture with Precision Scalable and Computation Reconfigurable Scheme.
    Chang L; Zhao X; Zhou J
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A parallel approximate string matching under Levenshtein distance on graphics processing units using warp-shuffle operations.
    Ho T; Oh SR; Kim H
    PLoS One; 2017; 12(10):e0186251. PubMed ID: 29016700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme Using Merged State Transitions in an FPGA.
    Kim H; Choi KI
    PLoS One; 2016; 11(10):e0163535. PubMed ID: 27695114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The WM-q multiple exact string matching algorithm for DNA sequences.
    Karcioglu AA; Bulut H
    Comput Biol Med; 2021 Sep; 136():104656. PubMed ID: 34333228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconfiguration-based implementation of SVM classifier on FPGA for Classifying Microarray data.
    Hussain HM; Benkrid K; Seker H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3058-61. PubMed ID: 24110373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SS-Wrapper: a package of wrapper applications for similarity searches on Linux clusters.
    Wang C; Lefkowitz EJ
    BMC Bioinformatics; 2004 Oct; 5():171. PubMed ID: 15511296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-speed multiple sequence alignment on a reconfigurable platform.
    Oliver T; Schmidt B; Maskell D; Nathan D; Clemens R
    Int J Bioinform Res Appl; 2006; 2(4):394-406. PubMed ID: 18048180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High speed pattern matching in genetic data base with reconfigurable hardware.
    Lemoine E; Quinqueton J; Sallantin J
    Proc Int Conf Intell Syst Mol Biol; 1994; 2():269-75. PubMed ID: 7584400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acceleration of fiber tracking in DTI tractography by reconfigurable computer hardware.
    Singh M; Kwatra A; Wong CW; Prasanna V
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4819-22. PubMed ID: 17947118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the efficiency of a user-driven learning system with reconfigurable hardware. Application to DNA splicing.
    Lemoine E; Merceron D; Sallantin J; Nguifo EM
    Pac Symp Biocomput; 1999; ():290-301. PubMed ID: 10380205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High speed homology search with FPGAs.
    Yamaguchi Y; Maruyama T; Konagaya A
    Pac Symp Biocomput; 2002; ():271-82. PubMed ID: 11928482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high-performance reconfigurable computing solution for Peptide mass fingerprinting.
    Coca D; Bogdan I; Beynon RJ
    Methods Mol Biol; 2010; 604():163-85. PubMed ID: 20013371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving hash-q exact string matching algorithm with perfect hashing for DNA sequences.
    Karcioglu AA; Bulut H
    Comput Biol Med; 2021 Apr; 131():104292. PubMed ID: 33662682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient real-time selective genome sequencing on resource-constrained devices.
    Shih PJ; Saadat H; Parameswaran S; Gamaarachchi H
    Gigascience; 2022 Dec; 12():. PubMed ID: 37395631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.