These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30530340)

  • 1. A Particle Swarm Optimization-Based Flexible Convolutional Autoencoder for Image Classification.
    Sun Y; Xue B; Zhang M; Yen GG
    IEEE Trans Neural Netw Learn Syst; 2019 Aug; 30(8):2295-2309. PubMed ID: 30530340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification.
    Sun Y; Xue B; Zhang M; Yen GG; Lv J
    IEEE Trans Cybern; 2020 Sep; 50(9):3840-3854. PubMed ID: 32324588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Completely Automated CNN Architecture Design Based on Blocks.
    Sun Y; Xue B; Zhang M; Yen GG
    IEEE Trans Neural Netw Learn Syst; 2020 Apr; 31(4):1242-1254. PubMed ID: 31247572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.
    Lu X; Chen Y; Li X
    IEEE Trans Image Process; 2018 Jan.; 27(1):106-120. PubMed ID: 28952940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Training Lightweight Deep Convolutional Neural Networks Using Bag-of-Features Pooling.
    Passalis N; Tefas A
    IEEE Trans Neural Netw Learn Syst; 2019 Jun; 30(6):1705-1715. PubMed ID: 30369453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A CNN Hyperparameters Optimization Based on Particle Swarm Optimization for Mammography Breast Cancer Classification.
    Aguerchi K; Jabrane Y; Habba M; El Hassani AH
    J Imaging; 2024 Jan; 10(2):. PubMed ID: 38392079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-view 2D CNNs with fully automatic non-nodule categorization for false positive reduction in pulmonary nodule detection.
    Eun H; Kim D; Jung C; Kim C
    Comput Methods Programs Biomed; 2018 Oct; 165():215-224. PubMed ID: 30337076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolving Deep Architecture Generation with Residual Connections for Image Classification Using Particle Swarm Optimization.
    Lawrence T; Zhang L; Rogage K; Lim CP
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast Image Super-Resolution Using Particle Swarm Optimization-Based Convolutional Neural Networks.
    Zhou C; Xiong A
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Deep Multi-Modal CNN for Multi-Instance Multi-Label Image Classification.
    Song L; Liu J; Qian B; Sun M; Yang K; Sun M; Abbas S
    IEEE Trans Image Process; 2018 Dec; 27(12):6025-6038. PubMed ID: 30106729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network.
    Du X; Qu X; He Y; Guo D
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29509666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Efficient and Lightweight Convolutional Neural Network for Remote Sensing Image Scene Classification.
    Yu D; Xu Q; Guo H; Zhao C; Lin Y; Li D
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32252483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning Contextual Dependence With Convolutional Hierarchical Recurrent Neural Networks.
    Zuo Z; Shuai B; Wang G; Liu X; Wang X; Wang B; Chen Y
    IEEE Trans Image Process; 2016 Jul; 25(7):2983-2996. PubMed ID: 28113173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust Computationally-Efficient Wireless Emitter Classification Using Autoencoders and Convolutional Neural Networks.
    Almazrouei E; Gianini G; Almoosa N; Damiani E
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33915685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying Convolutional Neural Networks to data on unstructured meshes with space-filling curves.
    Heaney CE; Li Y; Matar OK; Pain CC
    Neural Netw; 2024 Jul; 175():106198. PubMed ID: 38593555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surrogate-Assisted Particle Swarm Optimization for Evolving Variable-Length Transferable Blocks for Image Classification.
    Wang B; Xue B; Zhang M
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):3727-3740. PubMed ID: 33556026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets.
    Pintelas E; Livieris IE; Pintelas PE
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building Correlations Between Filters in Convolutional Neural Networks.
    Wang H; Chen P; Kwong S
    IEEE Trans Cybern; 2017 Oct; 47(10):3218-3229. PubMed ID: 27992359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards dropout training for convolutional neural networks.
    Wu H; Gu X
    Neural Netw; 2015 Nov; 71():1-10. PubMed ID: 26277608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of lung adenocarcinoma transcriptome subtypes from pathological images using deep convolutional networks.
    Antonio VAA; Ono N; Saito A; Sato T; Altaf-Ul-Amin M; Kanaya S
    Int J Comput Assist Radiol Surg; 2018 Dec; 13(12):1905-1913. PubMed ID: 30159833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.