BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 30530376)

  • 1. Bidirectional Recurrent Auto-Encoder for Photoplethysmogram Denoising.
    Lee J; Sun S; Yang SM; Sohn JJ; Park J; Lee S; Kim HC
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2375-2385. PubMed ID: 30530376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison and Noise Suppression of the Transmitted and Reflected Photoplethysmography Signals.
    Li S; Liu L; Wu J; Tang B; Li D
    Biomed Res Int; 2018; 2018():4523593. PubMed ID: 30356404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features.
    Dao D; Salehizadeh SMA; Noh Y; Chong JW; Cho CH; McManus D; Darling CE; Mendelson Y; Chon KH
    IEEE J Biomed Health Inform; 2017 Sep; 21(5):1242-1253. PubMed ID: 28113791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preeminently Robust Neural PPG Denoiser.
    Kwon JH; Kim SE; Kim NH; Lee EC; Lee JH
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SVR-EEMD: An Improved EEMD Method Based on Support Vector Regression Extension in PPG Signal Denoising.
    Liu G; Hu X; Wang E; Zhou G; Cai J; Zhang S
    Comput Math Methods Med; 2019; 2019():5363712. PubMed ID: 31915461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A stacked contractive denoising auto-encoder for ECG signal denoising.
    Xiong P; Wang H; Liu M; Lin F; Hou Z; Liu X
    Physiol Meas; 2016 Dec; 37(12):2214-2230. PubMed ID: 27869101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise Reduction in Photoplethysmography Signals Using a Convolutional Denoising Autoencoder With Unconventional Training Scheme.
    Mohagheghian F; Han D; Ghetia O; Peitzsch A; Nishita N; Pirayesh Shirazi Nejad M; Ding EY; Noorishirazi K; Hamel A; Otabil EM; DiMezza D; Dickson EL; Tran KV; McManus DD; Chon KH
    IEEE Trans Biomed Eng; 2024 Feb; 71(2):456-466. PubMed ID: 37682653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust PPG Peak Detection Using Dilated Convolutional Neural Networks.
    Kazemi K; Laitala J; Azimi I; Liljeberg P; Rahmani AM
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Schrödinger spectrum based continuous cuff-less blood pressure estimation using clinically relevant features from PPG signal and its second derivative.
    Sarkar S; Ghosh A
    Comput Biol Med; 2023 Nov; 166():107558. PubMed ID: 37806054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive template matching of photoplethysmogram pulses to detect motion artefact.
    Lim PK; Ng SC; Lovell NH; Yu YP; Tan MP; McCombie D; Lim E; Redmond SJ
    Physiol Meas; 2018 Oct; 39(10):105005. PubMed ID: 30183675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid denoising approach for PPG signals utilizing variational mode decomposition and improved wavelet thresholding.
    Hu Q; Li M; Jiang L; Liu M
    Technol Health Care; 2024 Feb; ():. PubMed ID: 38517823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPECMAR: fast heart rate estimation from PPG signal using a modified spectral subtraction scheme with composite motion artifacts reference generation.
    Islam MT; Ahmed ST; Shahnaz C; Fattah SA
    Med Biol Eng Comput; 2019 Mar; 57(3):689-702. PubMed ID: 30349957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust PPG motion artifact detection using a 1-D convolution neural network.
    Goh CH; Tan LK; Lovell NH; Ng SC; Tan MP; Lim E
    Comput Methods Programs Biomed; 2020 Nov; 196():105596. PubMed ID: 32580054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel and low-complexity peak detection algorithm for heart rate estimation from low-amplitude photoplethysmographic (PPG) signals.
    Argüello Prada EJ; Serna Maldonado RD
    J Med Eng Technol; 2018 Nov; 42(8):569-577. PubMed ID: 30920315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An optimal filter for short photoplethysmogram signals.
    Liang Y; Elgendi M; Chen Z; Ward R
    Sci Data; 2018 May; 5():180076. PubMed ID: 29714722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ECG Signal Denoising Method Using Conditional Generative Adversarial Net.
    Wang X; Chen B; Zeng M; Wang Y; Liu H; Liu R; Tian L; Lu X
    IEEE J Biomed Health Inform; 2022 Jul; 26(7):2929-2940. PubMed ID: 35446775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoplethysmography-Based Method for Automatic Detection of Premature Ventricular Contractions.
    Solosenko A; Petrenas A; Marozas V
    IEEE Trans Biomed Circuits Syst; 2015 Oct; 9(5):662-9. PubMed ID: 26513800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal quality measures for pulse oximetry through waveform morphology analysis.
    Sukor JA; Redmond SJ; Lovell NH
    Physiol Meas; 2011 Mar; 32(3):369-84. PubMed ID: 21330696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A singular spectrum analysis-based model-free electrocardiogram denoising technique.
    Mukhopadhyay SK; Krishnan S
    Comput Methods Programs Biomed; 2020 May; 188():105304. PubMed ID: 31927178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.